MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2 Unicode version

Theorem ltmul2 9603
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
ltmul2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )

Proof of Theorem ltmul2
StepHypRef Expression
1 ltmul1 9602 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
2 recn 8823 . . . 4  |-  ( C  e.  RR  ->  C  e.  CC )
3 recn 8823 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
4 mulcom 8819 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
53, 4sylan 457 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
653adant2 974 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
7 recn 8823 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
8 mulcom 8819 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
97, 8sylan 457 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 973 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
116, 10breq12d 4037 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B )
) )
122, 11syl3an3 1217 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B )
) )
13123adant3r 1179 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
141, 13bitrd 244 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   class class class wbr 4024  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733    x. cmul 8738    < clt 8863
This theorem is referenced by:  ltmul12a  9608  mulgt1  9611  ltmulgt11  9612  lt2msq1  9635  ltdiv2  9637  ltmul2i  9674  ltmul2d  10424  ef01bndlem  12460  cos01gt0  12467  sin4lt0  12471  iserodd  12884  pockthg  12949  prmreclem1  12959  prmreclem5  12963  blcvx  18300  dvcvx  19363  itgulm  19780  tangtx  19869  chtub  20447  bposlem1  20519  bposlem2  20520  bposlem7  20525  lgsdilem  20557  lgsquadlem1  20589  lgsquadlem2  20590  chebbnd1lem3  20616  chto1ub  20621  pntlemb  20742  irrapxlem1  26318  irrapxlem2  26319  irrapxlem5  26322  pellexlem2  26326  rmspecsqrnq  26402  stoweidlem11  27171  stoweidlem26  27186
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-ltxr 8868  df-sub 9035  df-neg 9036
  Copyright terms: Public domain W3C validator