MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2 Unicode version

Theorem ltmul2 9575
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
ltmul2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )

Proof of Theorem ltmul2
StepHypRef Expression
1 ltmul1 9574 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
2 recn 8795 . . . 4  |-  ( C  e.  RR  ->  C  e.  CC )
3 recn 8795 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
4 mulcom 8791 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
53, 4sylan 459 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
653adant2 979 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
7 recn 8795 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
8 mulcom 8791 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
97, 8sylan 459 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 978 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
116, 10breq12d 4010 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B )
) )
122, 11syl3an3 1222 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B )
) )
13123adant3r 1184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
141, 13bitrd 246 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3997  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705    x. cmul 8710    < clt 8835
This theorem is referenced by:  ltmul12a  9580  mulgt1  9583  ltmulgt11  9584  lt2msq1  9607  ltdiv2  9609  ltmul2i  9646  ltmul2d  10396  ef01bndlem  12427  cos01gt0  12434  sin4lt0  12438  iserodd  12851  pockthg  12916  prmreclem1  12926  prmreclem5  12930  blcvx  18267  dvcvx  19330  itgulm  19747  tangtx  19836  chtub  20414  bposlem1  20486  bposlem2  20487  bposlem7  20492  lgsdilem  20524  lgsquadlem1  20556  lgsquadlem2  20557  chebbnd1lem3  20583  chto1ub  20588  pntlemb  20709  irrapxlem1  26275  irrapxlem2  26276  irrapxlem5  26279  pellexlem2  26283  rmspecsqrnq  26359  stoweidlem11  27129  stoweidlem26  27144
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-ltxr 8840  df-sub 9007  df-neg 9008
  Copyright terms: Public domain W3C validator