Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Unicode version

Theorem ltrnco 30175
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h  |-  H  =  ( LHyp `  K
)
ltrnco.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnco  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
Dummy variables  q  p are mutually distinct and distinct from all other variables.

Proof of Theorem ltrnco
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 ltrnco.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 eqid 2284 . . . . 5  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
4 ltrnco.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrnldil 29578 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F  e.  ( ( LDil `  K
) `  W )
)
653adant3 977 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F  e.  ( ( LDil `  K
) `  W )
)
72, 3, 4ltrnldil 29578 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G  e.  ( ( LDil `  K
) `  W )
)
873adant2 976 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G  e.  ( ( LDil `  K
) `  W )
)
92, 3ldilco 29572 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  ( ( LDil `  K
) `  W )  /\  G  e.  (
( LDil `  K ) `  W ) )  -> 
( F  o.  G
)  e.  ( (
LDil `  K ) `  W ) )
101, 6, 8, 9syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  ( ( LDil `  K
) `  W )
)
11 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 simp2l 983 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
13 simp3l 985 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  p
( le `  K
) W )
1412, 13jca 520 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )
15 simp2r 984 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  q  e.  ( Atoms `  K )
)
16 simp3r 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  q
( le `  K
) W )
1715, 16jca 520 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q  e.  ( Atoms `  K )  /\  -.  q ( le
`  K ) W ) )
18 simp12 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  F  e.  T )
19 simp13 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  G  e.  T )
20 eqid 2284 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
21 eqid 2284 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
22 eqid 2284 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
23 eqid 2284 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
2420, 21, 22, 23, 2, 4cdlemg41 30174 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( p  e.  ( Atoms `  K
)  /\  -.  p
( le `  K
) W )  /\  ( q  e.  (
Atoms `  K )  /\  -.  q ( le `  K ) W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( p (
join `  K )
( ( F  o.  G ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( ( F  o.  G ) `  q ) ) (
meet `  K ) W ) )
2511, 14, 17, 18, 19, 24syl122anc 1193 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( ( F  o.  G ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( ( F  o.  G ) `
 q ) ) ( meet `  K
) W ) )
26253exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  ->  ( ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( ( F  o.  G ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( ( F  o.  G ) `
 q ) ) ( meet `  K
) W ) ) ) )
2726ralrimivv 2635 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  A. p  e.  ( Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le `  K ) W  /\  -.  q
( le `  K
) W )  -> 
( ( p (
join `  K )
( ( F  o.  G ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( ( F  o.  G ) `  q ) ) (
meet `  K ) W ) ) )
2820, 21, 22, 23, 2, 3, 4isltrn 29575 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( F  o.  G )  e.  T  <->  ( ( F  o.  G
)  e.  ( (
LDil `  K ) `  W )  /\  A. p  e.  ( Atoms `  K ) A. q  e.  ( Atoms `  K )
( ( -.  p
( le `  K
) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( ( F  o.  G ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( ( F  o.  G ) `
 q ) ) ( meet `  K
) W ) ) ) ) )
29283ad2ant1 978 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  G )  e.  T  <->  ( ( F  o.  G )  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( ( F  o.  G ) `
 p ) ) ( meet `  K
) W )  =  ( ( q (
join `  K )
( ( F  o.  G ) `  q
) ) ( meet `  K ) W ) ) ) ) )
3010, 27, 29mpbir2and 890 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544   class class class wbr 4024    o. ccom 4692   ` cfv 5221  (class class class)co 5819   lecple 13209   joincjn 14072   meetcmee 14073   Atomscatm 28720   HLchlt 28807   LHypclh 29440   LDilcldil 29556   LTrncltrn 29557
This theorem is referenced by:  trlcocnv  30176  trlcoabs2N  30178  trlcoat  30179  trlconid  30181  trlcolem  30182  trlcone  30184  cdlemg44  30189  cdlemg46  30191  cdlemg47  30192  trljco  30196  tgrpgrplem  30205  tendoidcl  30225  tendococl  30228  tendoplcl2  30234  tendoplco2  30235  tendoplcl  30237  tendo0co2  30244  tendoicl  30252  cdlemh1  30271  cdlemh2  30272  cdlemh  30273  cdlemi2  30275  cdlemi  30276  cdlemk2  30288  cdlemk3  30289  cdlemk4  30290  cdlemk8  30294  cdlemk9  30295  cdlemk9bN  30296  cdlemkvcl  30298  cdlemk10  30299  cdlemk11  30305  cdlemk12  30306  cdlemk14  30310  cdlemk11u  30327  cdlemk12u  30328  cdlemk37  30370  cdlemkfid1N  30377  cdlemkid1  30378  cdlemk45  30403  cdlemk47  30405  cdlemk48  30406  cdlemk50  30408  cdlemk52  30410  cdlemk53a  30411  cdlemk54  30414  cdlemk55a  30415  cdlemk55u1  30421  cdlemk55u  30422  tendospcanN  30480  dvalveclem  30482  dialss  30503  dia2dimlem4  30524  dvhvaddcl  30552  diblss  30627  cdlemn3  30654  dihopelvalcpre  30705  dih1  30743  dihglbcpreN  30757  dihjatcclem3  30877  dihjatcclem4  30878
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-map 6769  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561  df-trl 29615
  Copyright terms: Public domain W3C validator