Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Unicode version

Theorem ltrnco 31530
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h  |-  H  =  ( LHyp `  K
)
ltrnco.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnco  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)

Proof of Theorem ltrnco
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 ltrnco.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 eqid 2296 . . . . 5  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
4 ltrnco.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrnldil 30933 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F  e.  ( ( LDil `  K
) `  W )
)
653adant3 975 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F  e.  ( ( LDil `  K
) `  W )
)
72, 3, 4ltrnldil 30933 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G  e.  ( ( LDil `  K
) `  W )
)
873adant2 974 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G  e.  ( ( LDil `  K
) `  W )
)
92, 3ldilco 30927 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  ( ( LDil `  K
) `  W )  /\  G  e.  (
( LDil `  K ) `  W ) )  -> 
( F  o.  G
)  e.  ( (
LDil `  K ) `  W ) )
101, 6, 8, 9syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  ( ( LDil `  K
) `  W )
)
11 simp11 985 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 simp2l 981 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
13 simp3l 983 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  p
( le `  K
) W )
1412, 13jca 518 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )
15 simp2r 982 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  q  e.  ( Atoms `  K )
)
16 simp3r 984 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  q
( le `  K
) W )
1715, 16jca 518 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q  e.  ( Atoms `  K )  /\  -.  q ( le
`  K ) W ) )
18 simp12 986 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  F  e.  T )
19 simp13 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  G  e.  T )
20 eqid 2296 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
21 eqid 2296 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
22 eqid 2296 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
23 eqid 2296 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
2420, 21, 22, 23, 2, 4cdlemg41 31529 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( p  e.  ( Atoms `  K
)  /\  -.  p
( le `  K
) W )  /\  ( q  e.  (
Atoms `  K )  /\  -.  q ( le `  K ) W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( p (
join `  K )
( ( F  o.  G ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( ( F  o.  G ) `  q ) ) (
meet `  K ) W ) )
2511, 14, 17, 18, 19, 24syl122anc 1191 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( ( F  o.  G ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( ( F  o.  G ) `
 q ) ) ( meet `  K
) W ) )
26253exp 1150 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  ->  ( ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( ( F  o.  G ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( ( F  o.  G ) `
 q ) ) ( meet `  K
) W ) ) ) )
2726ralrimivv 2647 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  A. p  e.  ( Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le `  K ) W  /\  -.  q
( le `  K
) W )  -> 
( ( p (
join `  K )
( ( F  o.  G ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( ( F  o.  G ) `  q ) ) (
meet `  K ) W ) ) )
2820, 21, 22, 23, 2, 3, 4isltrn 30930 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( F  o.  G )  e.  T  <->  ( ( F  o.  G
)  e.  ( (
LDil `  K ) `  W )  /\  A. p  e.  ( Atoms `  K ) A. q  e.  ( Atoms `  K )
( ( -.  p
( le `  K
) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( ( F  o.  G ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( ( F  o.  G ) `
 q ) ) ( meet `  K
) W ) ) ) ) )
29283ad2ant1 976 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  G )  e.  T  <->  ( ( F  o.  G )  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( ( F  o.  G ) `
 p ) ) ( meet `  K
) W )  =  ( ( q (
join `  K )
( ( F  o.  G ) `  q
) ) ( meet `  K ) W ) ) ) ) )
3010, 27, 29mpbir2and 888 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   class class class wbr 4039    o. ccom 4709   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LDilcldil 30911   LTrncltrn 30912
This theorem is referenced by:  trlcocnv  31531  trlcoabs2N  31533  trlcoat  31534  trlconid  31536  trlcolem  31537  trlcone  31539  cdlemg44  31544  cdlemg46  31546  cdlemg47  31547  trljco  31551  tgrpgrplem  31560  tendoidcl  31580  tendococl  31583  tendoplcl2  31589  tendoplco2  31590  tendoplcl  31592  tendo0co2  31599  tendoicl  31607  cdlemh1  31626  cdlemh2  31627  cdlemh  31628  cdlemi2  31630  cdlemi  31631  cdlemk2  31643  cdlemk3  31644  cdlemk4  31645  cdlemk8  31649  cdlemk9  31650  cdlemk9bN  31651  cdlemkvcl  31653  cdlemk10  31654  cdlemk11  31660  cdlemk12  31661  cdlemk14  31665  cdlemk11u  31682  cdlemk12u  31683  cdlemk37  31725  cdlemkfid1N  31732  cdlemkid1  31733  cdlemk45  31758  cdlemk47  31760  cdlemk48  31761  cdlemk50  31763  cdlemk52  31765  cdlemk53a  31766  cdlemk54  31769  cdlemk55a  31770  cdlemk55u1  31776  cdlemk55u  31777  tendospcanN  31835  dvalveclem  31837  dialss  31858  dia2dimlem4  31879  dvhvaddcl  31907  diblss  31982  cdlemn3  32009  dihopelvalcpre  32060  dih1  32098  dihglbcpreN  32112  dihjatcclem3  32232  dihjatcclem4  32233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator