Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoval Unicode version

Theorem ltrncoval 30260
Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncoval  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )

Proof of Theorem ltrncoval
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  G  e.  T )
3 eqid 2388 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 ltrnel.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 ltrnel.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5ltrn1o 30239 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
71, 2, 6syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  G : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
8 f1of 5615 . . 3  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
97, 8syl 16 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  G : ( Base `  K
) --> ( Base `  K
) )
10 ltrnel.a . . . 4  |-  A  =  ( Atoms `  K )
113, 10atbase 29405 . . 3  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
12113ad2ant3 980 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  P  e.  ( Base `  K
) )
13 fvco3 5740 . 2  |-  ( ( G : ( Base `  K ) --> ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )
149, 12, 13syl2anc 643 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    o. ccom 4823   -->wf 5391   -1-1-onto->wf1o 5394   ` cfv 5395   Basecbs 13397   lecple 13464   Atomscatm 29379   HLchlt 29466   LHypclh 30099   LTrncltrn 30216
This theorem is referenced by:  cdlemg41  30833  trlcoabs  30836  trlcoabs2N  30837  trlcolem  30841  cdlemg44  30848  cdlemi2  30934  cdlemk2  30947  cdlemk4  30949  cdlemk8  30953  dia2dimlem4  31183  dihjatcclem3  31536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-map 6957  df-ats 29383  df-laut 30104  df-ldil 30219  df-ltrn 30220
  Copyright terms: Public domain W3C validator