Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Unicode version

Theorem ltrnel 29595
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnel  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
2 eqid 2284 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
3 ltrnel.a . . . . . 6  |-  A  =  ( Atoms `  K )
42, 3atbase 28746 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
54adantr 453 . . . 4  |-  ( ( P  e.  A  /\  -.  P  .<_  W )  ->  P  e.  (
Base `  K )
)
6 ltrnel.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 ltrnel.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
82, 3, 6, 7ltrnatb 29593 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
95, 8syl3an3 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
101, 9mpbid 203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
11 simp3r 986 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
12 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp2 958 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
141, 4syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
15 simp1r 982 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
162, 6lhpbase 29454 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1715, 16syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
18 ltrnel.l . . . . . 6  |-  .<_  =  ( le `  K )
192, 18, 6, 7ltrnle 29585 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  ( F `
 W ) ) )
2012, 13, 14, 17, 19syl112anc 1188 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  ( F `
 W ) ) )
21 simp1l 981 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
22 hllat 28820 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
2321, 22syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
242, 18latref 14153 . . . . . . 7  |-  ( ( K  e.  Lat  /\  W  e.  ( Base `  K ) )  ->  W  .<_  W )
2523, 17, 24syl2anc 644 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  .<_  W )
262, 18, 6, 7ltrnval1 29590 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( W  e.  (
Base `  K )  /\  W  .<_  W ) )  ->  ( F `  W )  =  W )
2712, 13, 17, 25, 26syl112anc 1188 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  W )  =  W )
2827breq2d 4036 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .<_  ( F `  W
)  <->  ( F `  P )  .<_  W ) )
2920, 28bitrd 246 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  W ) )
3011, 29mtbid 293 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  ( F `  P )  .<_  W )
3110, 30jca 520 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   class class class wbr 4024   ` cfv 5221   Basecbs 13142   lecple 13209   Latclat 14145   Atomscatm 28720   HLchlt 28807   LHypclh 29440   LTrncltrn 29557
This theorem is referenced by:  ltrncoelN  29599  trlcnv  29621  trljat2  29623  cdlemc3  29649  cdlemc5  29651  cdlemd9  29662  cdlemeiota  30041  cdlemg1cex  30044  cdlemg2l  30059  cdlemg2m  30060  cdlemg7fvbwN  30063  cdlemg4a  30064  cdlemg4b1  30065  cdlemg4b2  30066  cdlemg4d  30069  cdlemg4e  30070  cdlemg4  30073  cdlemg6e  30078  cdlemg7fvN  30080  cdlemg8b  30084  cdlemg8c  30085  cdlemg10bALTN  30092  cdlemg10a  30096  cdlemg12d  30102  cdlemg13a  30107  cdlemg13  30108  cdlemg14f  30109  cdlemg17b  30118  cdlemg17f  30122  cdlemg17i  30125  trlcoabs  30177  trlcoabs2N  30178  trlcolem  30182  cdlemg43  30186  cdlemg44b  30188  cdlemi2  30275  cdlemi  30276  cdlemk2  30288  cdlemk3  30289  cdlemk4  30290  cdlemk8  30294  cdlemk9  30295  cdlemk9bN  30296  cdlemki  30297  cdlemksv2  30303  cdlemk12  30306  cdlemkoatnle  30307  cdlemk12u  30328  cdlemkfid1N  30377  cdlemk47  30405  dia2dimlem1  30521  dia2dimlem2  30522  dia2dimlem3  30523  dia2dimlem6  30526  cdlemm10N  30575  dih1dimatlem0  30785  dih1dimatlem  30786
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-undef 6291  df-riota 6299  df-map 6769  df-poset 14074  df-plt 14086  df-glb 14103  df-p0 14139  df-lat 14146  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561
  Copyright terms: Public domain W3C validator