Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnidn Unicode version

Theorem ltrnnidn 29530
Description: If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom  W is different from the atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrnnidn.b  |-  B  =  ( Base `  K
)
ltrnnidn.l  |-  .<_  =  ( le `  K )
ltrnnidn.a  |-  A  =  ( Atoms `  K )
ltrnnidn.h  |-  H  =  ( LHyp `  K
)
ltrnnidn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnnidn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  =/=  P
)

Proof of Theorem ltrnnidn
StepHypRef Expression
1 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 hlatl 28717 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  AtLat )
4 simp1 960 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp2l 986 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T
)
6 simp2r 987 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  =/=  (  _I  |`  B ) )
7 ltrnnidn.b . . . . 5  |-  B  =  ( Base `  K
)
8 ltrnnidn.a . . . . 5  |-  A  =  ( Atoms `  K )
9 ltrnnidn.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 ltrnnidn.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
11 eqid 2258 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlnidat 29529 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  e.  A
)
134, 5, 6, 12syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  e.  A
)
14 eqid 2258 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
1514, 8atn0 28665 . . 3  |-  ( ( K  e.  AtLat  /\  (
( ( trL `  K
) `  W ) `  F )  e.  A
)  ->  ( (
( trL `  K
) `  W ) `  F )  =/=  ( 0. `  K ) )
163, 13, 15syl2anc 645 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  =/=  ( 0. `  K ) )
17 simpl1 963 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simpl3 965 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
19 simpl2l 1013 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
20 simpr 449 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( F `  P )  =  P )
21 ltrnnidn.l . . . . . 6  |-  .<_  =  ( le `  K )
2221, 14, 8, 9, 10, 11trl0 29526 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  =  ( 0. `  K ) )
2317, 18, 19, 20, 22syl112anc 1191 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( (
( trL `  K
) `  W ) `  F )  =  ( 0. `  K ) )
2423ex 425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `
 P )  =  P  ->  ( (
( trL `  K
) `  W ) `  F )  =  ( 0. `  K ) ) )
2524necon3d 2459 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( ( ( trL `  K
) `  W ) `  F )  =/=  ( 0. `  K )  -> 
( F `  P
)  =/=  P ) )
2616, 25mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  =/=  P
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997    _I cid 4276    |` cres 4663   ` cfv 4673   Basecbs 13110   lecple 13177   0.cp0 14105   Atomscatm 28620   AtLatcal 28621   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   trLctrl 29514
This theorem is referenced by:  ltrnideq  29531
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515
  Copyright terms: Public domain W3C validator