MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Unicode version

Theorem ltrnq 8848
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )

Proof of Theorem ltrnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8795 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4918 . 2  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
31brel 4918 . . 3  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( ( *Q `  B )  e. 
Q.  /\  ( *Q `  A )  e.  Q. ) )
4 dmrecnq 8837 . . . . 5  |-  dom  *Q  =  Q.
5 0nnq 8793 . . . . 5  |-  -.  (/)  e.  Q.
64, 5ndmfvrcl 5748 . . . 4  |-  ( ( *Q `  B )  e.  Q.  ->  B  e.  Q. )
74, 5ndmfvrcl 5748 . . . 4  |-  ( ( *Q `  A )  e.  Q.  ->  A  e.  Q. )
86, 7anim12ci 551 . . 3  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  e.  Q.  /\  B  e.  Q. )
)
93, 8syl 16 . 2  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( A  e.  Q.  /\  B  e. 
Q. ) )
10 breq1 4207 . . . 4  |-  ( x  =  A  ->  (
x  <Q  y  <->  A  <Q  y ) )
11 fveq2 5720 . . . . 5  |-  ( x  =  A  ->  ( *Q `  x )  =  ( *Q `  A
) )
1211breq2d 4216 . . . 4  |-  ( x  =  A  ->  (
( *Q `  y
)  <Q  ( *Q `  x )  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) )
1310, 12bibi12d 313 . . 3  |-  ( x  =  A  ->  (
( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) )  <->  ( A  <Q  y  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) ) )
14 breq2 4208 . . . 4  |-  ( y  =  B  ->  ( A  <Q  y  <->  A  <Q  B ) )
15 fveq2 5720 . . . . 5  |-  ( y  =  B  ->  ( *Q `  y )  =  ( *Q `  B
) )
1615breq1d 4214 . . . 4  |-  ( y  =  B  ->  (
( *Q `  y
)  <Q  ( *Q `  A )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
1714, 16bibi12d 313 . . 3  |-  ( y  =  B  ->  (
( A  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  A
) )  <->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) ) )
18 recclnq 8835 . . . . . 6  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
19 recclnq 8835 . . . . . 6  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
20 mulclnq 8816 . . . . . 6  |-  ( ( ( *Q `  x
)  e.  Q.  /\  ( *Q `  y )  e.  Q. )  -> 
( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
2118, 19, 20syl2an 464 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
22 ltmnq 8841 . . . . 5  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  e.  Q.  ->  (
x  <Q  y  <->  ( (
( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
2321, 22syl 16 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
24 mulcomnq 8822 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
25 mulassnq 8828 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
26 mulcomnq 8822 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
2724, 25, 263eqtr2i 2461 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
28 recidnq 8834 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
2928oveq2d 6089 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  y
)  .Q  ( x  .Q  ( *Q `  x ) ) )  =  ( ( *Q
`  y )  .Q  1Q ) )
30 mulidnq 8832 . . . . . . . 8  |-  ( ( *Q `  y )  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3119, 30syl 16 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3229, 31sylan9eq 2487 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )  =  ( *Q
`  y ) )
3327, 32syl5eq 2479 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  x
)  =  ( *Q
`  y ) )
34 mulassnq 8828 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
( *Q `  y
)  .Q  y ) )
35 mulcomnq 8822 . . . . . . . 8  |-  ( ( *Q `  y )  .Q  y )  =  ( y  .Q  ( *Q `  y ) )
3635oveq2i 6084 . . . . . . 7  |-  ( ( *Q `  x )  .Q  ( ( *Q
`  y )  .Q  y ) )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
3734, 36eqtri 2455 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
38 recidnq 8834 . . . . . . . 8  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
3938oveq2d 6089 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  x
)  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( ( *Q
`  x )  .Q  1Q ) )
40 mulidnq 8832 . . . . . . . 8  |-  ( ( *Q `  x )  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4118, 40syl 16 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4239, 41sylan9eqr 2489 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  ( *Q
`  x ) )
4337, 42syl5eq 2479 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
)  =  ( *Q
`  x ) )
4433, 43breq12d 4217 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q  (
( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  y )  <->  ( *Q `  y )  <Q  ( *Q `  x ) ) )
4523, 44bitrd 245 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) ) )
4613, 17, 45vtocl2ga 3011 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
472, 9, 46pm5.21nii 343 1  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Q.cnq 8719   1Qc1q 8720    .Q cmq 8723   *Qcrq 8724    <Q cltq 8725
This theorem is referenced by:  addclprlem1  8885  reclem2pr  8917  reclem3pr  8918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ni 8741  df-mi 8743  df-lti 8744  df-mpq 8778  df-ltpq 8779  df-enq 8780  df-nq 8781  df-erq 8782  df-mq 8784  df-1nq 8785  df-rq 8786  df-ltnq 8787
  Copyright terms: Public domain W3C validator