MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Unicode version

Theorem ltrnq 8605
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )

Proof of Theorem ltrnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8552 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4739 . 2  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
31brel 4739 . . 3  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( ( *Q `  B )  e. 
Q.  /\  ( *Q `  A )  e.  Q. ) )
4 dmrecnq 8594 . . . . 5  |-  dom  *Q  =  Q.
5 0nnq 8550 . . . . 5  |-  -.  (/)  e.  Q.
64, 5ndmfvrcl 5555 . . . 4  |-  ( ( *Q `  B )  e.  Q.  ->  B  e.  Q. )
74, 5ndmfvrcl 5555 . . . 4  |-  ( ( *Q `  A )  e.  Q.  ->  A  e.  Q. )
86, 7anim12ci 550 . . 3  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  e.  Q.  /\  B  e.  Q. )
)
93, 8syl 15 . 2  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( A  e.  Q.  /\  B  e. 
Q. ) )
10 breq1 4028 . . . 4  |-  ( x  =  A  ->  (
x  <Q  y  <->  A  <Q  y ) )
11 fveq2 5527 . . . . 5  |-  ( x  =  A  ->  ( *Q `  x )  =  ( *Q `  A
) )
1211breq2d 4037 . . . 4  |-  ( x  =  A  ->  (
( *Q `  y
)  <Q  ( *Q `  x )  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) )
1310, 12bibi12d 312 . . 3  |-  ( x  =  A  ->  (
( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) )  <->  ( A  <Q  y  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) ) )
14 breq2 4029 . . . 4  |-  ( y  =  B  ->  ( A  <Q  y  <->  A  <Q  B ) )
15 fveq2 5527 . . . . 5  |-  ( y  =  B  ->  ( *Q `  y )  =  ( *Q `  B
) )
1615breq1d 4035 . . . 4  |-  ( y  =  B  ->  (
( *Q `  y
)  <Q  ( *Q `  A )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
1714, 16bibi12d 312 . . 3  |-  ( y  =  B  ->  (
( A  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  A
) )  <->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) ) )
18 recclnq 8592 . . . . . 6  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
19 recclnq 8592 . . . . . 6  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
20 mulclnq 8573 . . . . . 6  |-  ( ( ( *Q `  x
)  e.  Q.  /\  ( *Q `  y )  e.  Q. )  -> 
( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
2118, 19, 20syl2an 463 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
22 ltmnq 8598 . . . . 5  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  e.  Q.  ->  (
x  <Q  y  <->  ( (
( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
2321, 22syl 15 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
24 mulcomnq 8579 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
25 mulassnq 8585 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
26 mulcomnq 8579 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
2724, 25, 263eqtr2i 2311 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
28 recidnq 8591 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
2928oveq2d 5876 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  y
)  .Q  ( x  .Q  ( *Q `  x ) ) )  =  ( ( *Q
`  y )  .Q  1Q ) )
30 mulidnq 8589 . . . . . . . 8  |-  ( ( *Q `  y )  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3119, 30syl 15 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3229, 31sylan9eq 2337 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )  =  ( *Q
`  y ) )
3327, 32syl5eq 2329 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  x
)  =  ( *Q
`  y ) )
34 mulassnq 8585 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
( *Q `  y
)  .Q  y ) )
35 mulcomnq 8579 . . . . . . . 8  |-  ( ( *Q `  y )  .Q  y )  =  ( y  .Q  ( *Q `  y ) )
3635oveq2i 5871 . . . . . . 7  |-  ( ( *Q `  x )  .Q  ( ( *Q
`  y )  .Q  y ) )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
3734, 36eqtri 2305 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
38 recidnq 8591 . . . . . . . 8  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
3938oveq2d 5876 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  x
)  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( ( *Q
`  x )  .Q  1Q ) )
40 mulidnq 8589 . . . . . . . 8  |-  ( ( *Q `  x )  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4118, 40syl 15 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4239, 41sylan9eqr 2339 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  ( *Q
`  x ) )
4337, 42syl5eq 2329 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
)  =  ( *Q
`  x ) )
4433, 43breq12d 4038 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q  (
( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  y )  <->  ( *Q `  y )  <Q  ( *Q `  x ) ) )
4523, 44bitrd 244 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) ) )
4613, 17, 45vtocl2ga 2853 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
472, 9, 46pm5.21nii 342 1  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Q.cnq 8476   1Qc1q 8477    .Q cmq 8480   *Qcrq 8481    <Q cltq 8482
This theorem is referenced by:  addclprlem1  8642  reclem2pr  8674  reclem3pr  8675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-omul 6486  df-er 6662  df-ni 8498  df-mi 8500  df-lti 8501  df-mpq 8535  df-ltpq 8536  df-enq 8537  df-nq 8538  df-erq 8539  df-mq 8541  df-1nq 8542  df-rq 8543  df-ltnq 8544
  Copyright terms: Public domain W3C validator