MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxrlt Unicode version

Theorem ltxrlt 8980
Description: The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )

Proof of Theorem ltxrlt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brun 4148 . . . . 5  |-  ( A ( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  \/  A ( {  -oo }  X.  RR ) B ) )
2 brxp 4799 . . . . . . 7  |-  ( A ( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  <->  ( A  e.  ( RR  u.  {  -oo } )  /\  B  e.  {  +oo } ) )
3 elsni 3740 . . . . . . . . 9  |-  ( B  e.  {  +oo }  ->  B  =  +oo )
4 pnfnre 8961 . . . . . . . . . . 11  |-  +oo  e/  RR
5 df-nel 2524 . . . . . . . . . . 11  |-  (  +oo  e/  RR  <->  -.  +oo  e.  RR )
64, 5mpbi 199 . . . . . . . . . 10  |-  -.  +oo  e.  RR
7 simpr 447 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
8 eleq1 2418 . . . . . . . . . . 11  |-  ( B  =  +oo  ->  ( B  e.  RR  <->  +oo  e.  RR ) )
97, 8syl5ib 210 . . . . . . . . . 10  |-  ( B  =  +oo  ->  (
( A  e.  RR  /\  B  e.  RR )  ->  +oo  e.  RR ) )
106, 9mtoi 169 . . . . . . . . 9  |-  ( B  =  +oo  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
113, 10syl 15 . . . . . . . 8  |-  ( B  e.  {  +oo }  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
1211adantl 452 . . . . . . 7  |-  ( ( A  e.  ( RR  u.  {  -oo }
)  /\  B  e.  { 
+oo } )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
132, 12sylbi 187 . . . . . 6  |-  ( A ( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
14 brxp 4799 . . . . . . 7  |-  ( A ( {  -oo }  X.  RR ) B  <->  ( A  e.  {  -oo }  /\  B  e.  RR )
)
15 elsni 3740 . . . . . . . . 9  |-  ( A  e.  {  -oo }  ->  A  =  -oo )
16 mnfnre 8962 . . . . . . . . . . 11  |-  -oo  e/  RR
17 df-nel 2524 . . . . . . . . . . 11  |-  (  -oo  e/  RR  <->  -.  -oo  e.  RR )
1816, 17mpbi 199 . . . . . . . . . 10  |-  -.  -oo  e.  RR
19 simpl 443 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
20 eleq1 2418 . . . . . . . . . . 11  |-  ( A  =  -oo  ->  ( A  e.  RR  <->  -oo  e.  RR ) )
2119, 20syl5ib 210 . . . . . . . . . 10  |-  ( A  =  -oo  ->  (
( A  e.  RR  /\  B  e.  RR )  ->  -oo  e.  RR ) )
2218, 21mtoi 169 . . . . . . . . 9  |-  ( A  =  -oo  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2315, 22syl 15 . . . . . . . 8  |-  ( A  e.  {  -oo }  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2423adantr 451 . . . . . . 7  |-  ( ( A  e.  {  -oo }  /\  B  e.  RR )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2514, 24sylbi 187 . . . . . 6  |-  ( A ( {  -oo }  X.  RR ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2613, 25jaoi 368 . . . . 5  |-  ( ( A ( ( RR  u.  {  -oo }
)  X.  {  +oo } ) B  \/  A
( {  -oo }  X.  RR ) B )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
271, 26sylbi 187 . . . 4  |-  ( A ( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2827con2i 112 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B )
29 biimt 325 . . . 4  |-  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  -> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) ) )
30 df-ltxr 8959 . . . . . . 7  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) )
3130equncomi 3397 . . . . . 6  |-  <  =  ( ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } )
3231breqi 4108 . . . . 5  |-  ( A  <  B  <->  A (
( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } ) B )
33 brun 4148 . . . . 5  |-  ( A ( ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } ) B  <-> 
( A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  \/  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
34 df-or 359 . . . . 5  |-  ( ( A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  \/  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B )  <-> 
( -.  A ( ( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3532, 33, 343bitri 262 . . . 4  |-  ( A  <  B  <->  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3629, 35syl6rbbr 255 . . 3  |-  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  -> 
( A  <  B  <->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3728, 36syl 15 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
38 breq12 4107 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <RR  y  <->  A  <RR  B ) )
39 df-3an 936 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
4039opabbii 4162 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4138, 40brab2ga 4842 . . 3  |-  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B ) )
4241baibr 872 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
4337, 42bitr4d 247 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    e/ wnel 2522    u. cun 3226   {csn 3716   class class class wbr 4102   {copab 4155    X. cxp 4766   RRcr 8823    <RR cltrr 8828    +oocpnf 8951    -oocmnf 8952    < clt 8954
This theorem is referenced by:  axlttri  8981  axlttrn  8982  axltadd  8983  axmulgt0  8984  axsup  8985
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-resscn 8881
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-ltxr 8959
  Copyright terms: Public domain W3C validator