MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapcdaen Unicode version

Theorem mapcdaen 8020
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapcdaen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )

Proof of Theorem mapcdaen
StepHypRef Expression
1 cdaval 8006 . . . . 5  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
213adant1 975 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
32oveq2d 6056 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) )  =  ( A  ^m  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) )
4 simp2 958 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 snex 4365 . . . . 5  |-  { (/) }  e.  _V
6 xpexg 4948 . . . . 5  |-  ( ( B  e.  W  /\  {
(/) }  e.  _V )  ->  ( B  X.  { (/) } )  e. 
_V )
74, 5, 6sylancl 644 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  e.  _V )
8 simp3 959 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
9 snex 4365 . . . . 5  |-  { 1o }  e.  _V
10 xpexg 4948 . . . . 5  |-  ( ( C  e.  X  /\  { 1o }  e.  _V )  ->  ( C  X.  { 1o } )  e. 
_V )
118, 9, 10sylancl 644 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  e.  _V )
12 simp1 957 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
13 xp01disj 6699 . . . . 5  |-  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
1413a1i 11 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) )  =  (/) )
15 mapunen 7235 . . . 4  |-  ( ( ( ( B  X.  { (/) } )  e. 
_V  /\  ( C  X.  { 1o } )  e.  _V  /\  A  e.  V )  /\  (
( B  X.  { (/)
} )  i^i  ( C  X.  { 1o }
) )  =  (/) )  ->  ( A  ^m  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
167, 11, 12, 14, 15syl31anc 1187 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  (
( B  X.  { (/)
} )  u.  ( C  X.  { 1o }
) ) )  ~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
173, 16eqbrtrd 4192 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
18 enrefg 7098 . . . . 5  |-  ( A  e.  V  ->  A  ~~  A )
1912, 18syl 16 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
20 0ex 4299 . . . . 5  |-  (/)  e.  _V
21 xpsneng 7152 . . . . 5  |-  ( ( B  e.  W  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
224, 20, 21sylancl 644 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  ~~  B
)
23 mapen 7230 . . . 4  |-  ( ( A  ~~  A  /\  ( B  X.  { (/) } )  ~~  B )  ->  ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B ) )
2419, 22, 23syl2anc 643 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B ) )
25 1on 6690 . . . . 5  |-  1o  e.  On
26 xpsneng 7152 . . . . 5  |-  ( ( C  e.  X  /\  1o  e.  On )  -> 
( C  X.  { 1o } )  ~~  C
)
278, 25, 26sylancl 644 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  ~~  C
)
28 mapen 7230 . . . 4  |-  ( ( A  ~~  A  /\  ( C  X.  { 1o } )  ~~  C
)  ->  ( A  ^m  ( C  X.  { 1o } ) )  ~~  ( A  ^m  C ) )
2919, 27, 28syl2anc 643 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( C  X.  { 1o }
) )  ~~  ( A  ^m  C ) )
30 xpen 7229 . . 3  |-  ( ( ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B )  /\  ( A  ^m  ( C  X.  { 1o }
) )  ~~  ( A  ^m  C ) )  ->  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
3124, 29, 30syl2anc 643 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) )  ~~  ( ( A  ^m  B )  X.  ( A  ^m  C ) ) )
32 entr 7118 . 2  |-  ( ( ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) )  /\  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )  -> 
( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
3317, 31, 32syl2anc 643 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2916    u. cun 3278    i^i cin 3279   (/)c0 3588   {csn 3774   class class class wbr 4172   Oncon0 4541    X. cxp 4835  (class class class)co 6040   1oc1o 6676    ^m cmap 6977    ~~ cen 7065    +c ccda 8003
This theorem is referenced by:  pwcdaen  8021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-1o 6683  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-cda 8004
  Copyright terms: Public domain W3C validator