MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapcdaen Unicode version

Theorem mapcdaen 7778
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapcdaen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )

Proof of Theorem mapcdaen
StepHypRef Expression
1 cdaval 7764 . . . . 5  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
213adant1 978 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
32oveq2d 5808 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) )  =  ( A  ^m  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) )
4 simp2 961 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 snex 4188 . . . . 5  |-  { (/) }  e.  _V
6 xpexg 4788 . . . . 5  |-  ( ( B  e.  W  /\  {
(/) }  e.  _V )  ->  ( B  X.  { (/) } )  e. 
_V )
74, 5, 6sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  e.  _V )
8 simp3 962 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
9 snex 4188 . . . . 5  |-  { 1o }  e.  _V
10 xpexg 4788 . . . . 5  |-  ( ( C  e.  X  /\  { 1o }  e.  _V )  ->  ( C  X.  { 1o } )  e. 
_V )
118, 9, 10sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  e.  _V )
12 simp1 960 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
13 xp01disj 6463 . . . . 5  |-  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
1413a1i 12 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) )  =  (/) )
15 mapunen 6998 . . . 4  |-  ( ( ( ( B  X.  { (/) } )  e. 
_V  /\  ( C  X.  { 1o } )  e.  _V  /\  A  e.  V )  /\  (
( B  X.  { (/)
} )  i^i  ( C  X.  { 1o }
) )  =  (/) )  ->  ( A  ^m  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
167, 11, 12, 14, 15syl31anc 1190 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  (
( B  X.  { (/)
} )  u.  ( C  X.  { 1o }
) ) )  ~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
173, 16eqbrtrd 4017 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
18 enrefg 6861 . . . . 5  |-  ( A  e.  V  ->  A  ~~  A )
1912, 18syl 17 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
20 0ex 4124 . . . . 5  |-  (/)  e.  _V
21 xpsneng 6915 . . . . 5  |-  ( ( B  e.  W  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
224, 20, 21sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  ~~  B
)
23 mapen 6993 . . . 4  |-  ( ( A  ~~  A  /\  ( B  X.  { (/) } )  ~~  B )  ->  ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B ) )
2419, 22, 23syl2anc 645 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B ) )
25 1on 6454 . . . . 5  |-  1o  e.  On
26 xpsneng 6915 . . . . 5  |-  ( ( C  e.  X  /\  1o  e.  On )  -> 
( C  X.  { 1o } )  ~~  C
)
278, 25, 26sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  ~~  C
)
28 mapen 6993 . . . 4  |-  ( ( A  ~~  A  /\  ( C  X.  { 1o } )  ~~  C
)  ->  ( A  ^m  ( C  X.  { 1o } ) )  ~~  ( A  ^m  C ) )
2919, 27, 28syl2anc 645 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( C  X.  { 1o }
) )  ~~  ( A  ^m  C ) )
30 xpen 6992 . . 3  |-  ( ( ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B )  /\  ( A  ^m  ( C  X.  { 1o }
) )  ~~  ( A  ^m  C ) )  ->  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
3124, 29, 30syl2anc 645 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) )  ~~  ( ( A  ^m  B )  X.  ( A  ^m  C ) ) )
32 entr 6881 . 2  |-  ( ( ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) )  /\  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )  -> 
( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
3317, 31, 32syl2anc 645 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621   _Vcvv 2763    u. cun 3125    i^i cin 3126   (/)c0 3430   {csn 3614   class class class wbr 3997   Oncon0 4364    X. cxp 4659  (class class class)co 5792   1oc1o 6440    ^m cmap 6740    ~~ cen 6828    +c ccda 7761
This theorem is referenced by:  pwcdaen  7779
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-suc 4370  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-1o 6447  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-cda 7762
  Copyright terms: Public domain W3C validator