Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Unicode version

Theorem mapd1o 30968
Description: The map defined by df-mapd 30945 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows  M satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 30905, mapdrval 30967, lclkrs 30859, lclkr 30853,...) to use  T  i^i  ~P C? TODO: maybe get rid of $d's for  g vs.  K U W,. propagate to mapdrn 30969 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h  |-  H  =  ( LHyp `  K
)
mapd1o.o  |-  O  =  ( ( ocH `  K
) `  W )
mapd1o.m  |-  M  =  ( (mapd `  K
) `  W )
mapd1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapd1o.s  |-  S  =  ( LSubSp `  U )
mapd1o.f  |-  F  =  (LFnl `  U )
mapd1o.l  |-  L  =  (LKer `  U )
mapd1o.d  |-  D  =  (LDual `  U )
mapd1o.t  |-  T  =  ( LSubSp `  D )
mapd1o.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
mapd1o.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
mapd1o  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Distinct variable groups:    g, F    g, K    g, L    g, O    U, g    g, W
Allowed substitution hints:    ph( g)    C( g)    D( g)    S( g)    T( g)    H( g)    M( g)

Proof of Theorem mapd1o
StepHypRef Expression
1 mapd1o.f . . . . . 6  |-  F  =  (LFnl `  U )
2 fvex 5437 . . . . . 6  |-  (LFnl `  U )  e.  _V
31, 2eqeltri 2326 . . . . 5  |-  F  e. 
_V
43rabex 4105 . . . 4  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) }  e.  _V
5 eqid 2256 . . . 4  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )
64, 5fnmpti 5275 . . 3  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  Fn  S
7 mapd1o.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
8 mapd1o.h . . . . . 6  |-  H  =  ( LHyp `  K
)
9 mapd1o.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
10 mapd1o.s . . . . . 6  |-  S  =  ( LSubSp `  U )
11 mapd1o.l . . . . . 6  |-  L  =  (LKer `  U )
12 mapd1o.o . . . . . 6  |-  O  =  ( ( ocH `  K
) `  W )
13 mapd1o.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
148, 9, 10, 1, 11, 12, 13mapdfval 30947 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
157, 14syl 17 . . . 4  |-  ( ph  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
1615fneq1d 5238 . . 3  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  t ) } )  Fn  S ) )
176, 16mpbiri 226 . 2  |-  ( ph  ->  M  Fn  S )
183rabex 4105 . . . . . . 7  |-  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) }  e.  _V
19 eqid 2256 . . . . . . 7  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )
2018, 19fnmpti 5275 . . . . . 6  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  Fn  S
218, 9, 10, 1, 11, 12, 13mapdfval 30947 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
227, 21syl 17 . . . . . . 7  |-  ( ph  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
2322fneq1d 5238 . . . . . 6  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { g  e.  F  | 
( ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g )  /\  ( O `  ( L `
 g ) ) 
C_  t ) } )  Fn  S ) )
2420, 23mpbiri 226 . . . . 5  |-  ( ph  ->  M  Fn  S )
25 fvelrnb 5469 . . . . 5  |-  ( M  Fn  S  ->  (
t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
2624, 25syl 17 . . . 4  |-  ( ph  ->  ( t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
277adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simpr 449 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  c  e.  S )
298, 9, 10, 1, 11, 12, 13, 27, 28mapdval 30948 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) } )
30 mapd1o.d . . . . . . . . . 10  |-  D  =  (LDual `  U )
31 mapd1o.t . . . . . . . . . 10  |-  T  =  ( LSubSp `  D )
32 mapd1o.c . . . . . . . . . 10  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
33 eqid 2256 . . . . . . . . . 10  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }
348, 12, 9, 10, 1, 11, 30, 31, 32, 33, 27, 28lclkrs2 30860 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C ) )
35 elin 3300 . . . . . . . . . 10  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ( T  i^i  ~P C )  <->  ( {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  T  /\  {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C ) )
363rabex 4105 . . . . . . . . . . . 12  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  _V
3736elpw 3572 . . . . . . . . . . 11  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C )
3837anbi2i 678 . . . . . . . . . 10  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C )  <-> 
( { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C ) )
3935, 38bitr2i 243 . . . . . . . . 9  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C )  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4034, 39sylib 190 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4129, 40eqeltrd 2330 . . . . . . 7  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  e.  ( T  i^i  ~P C ) )
42 eleq1 2316 . . . . . . 7  |-  ( ( M `  c )  =  t  ->  (
( M `  c
)  e.  ( T  i^i  ~P C )  <-> 
t  e.  ( T  i^i  ~P C ) ) )
4341, 42syl5ibcom 213 . . . . . 6  |-  ( (
ph  /\  c  e.  S )  ->  (
( M `  c
)  =  t  -> 
t  e.  ( T  i^i  ~P C ) ) )
4443rexlimdva 2638 . . . . 5  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  ->  t  e.  ( T  i^i  ~P C
) ) )
45 eqid 2256 . . . . . . . 8  |-  U_ f  e.  t  ( O `  ( L `  f
) )  =  U_ f  e.  t  ( O `  ( L `  f ) )
467adantr 453 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
47 inss1 3331 . . . . . . . . . 10  |-  ( T  i^i  ~P C ) 
C_  T
4847sseli 3118 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  T )
4948adantl 454 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  e.  T )
50 inss2 3332 . . . . . . . . . . 11  |-  ( T  i^i  ~P C ) 
C_  ~P C
5150sseli 3118 . . . . . . . . . 10  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  ~P C )
52 elpwi 3574 . . . . . . . . . 10  |-  ( t  e.  ~P C  -> 
t  C_  C )
5351, 52syl 17 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  C_  C )
5453adantl 454 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  C_  C )
558, 12, 9, 10, 1, 11, 30, 31, 32, 45, 46, 49, 54lcfr 30905 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  U_ f  e.  t  ( O `  ( L `  f
) )  e.  S
)
568, 12, 13, 9, 10, 1, 11, 30, 31, 32, 46, 49, 54, 45mapdrval 30967 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( M `  U_ f  e.  t  ( O `  ( L `  f ) ) )  =  t )
57 fveq2 5423 . . . . . . . . 9  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( M `  c )  =  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) ) )
5857eqeq1d 2264 . . . . . . . 8  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( ( M `  c )  =  t  <->  ( M `  U_ f  e.  t  ( O `  ( L `
 f ) ) )  =  t ) )
5958rcla4ev 2835 . . . . . . 7  |-  ( (
U_ f  e.  t  ( O `  ( L `  f )
)  e.  S  /\  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) )  =  t )  ->  E. c  e.  S  ( M `  c )  =  t )
6055, 56, 59syl2anc 645 . . . . . 6  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  E. c  e.  S  ( M `  c )  =  t )
6160ex 425 . . . . 5  |-  ( ph  ->  ( t  e.  ( T  i^i  ~P C
)  ->  E. c  e.  S  ( M `  c )  =  t ) )
6244, 61impbid 185 . . . 4  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6326, 62bitrd 246 . . 3  |-  ( ph  ->  ( t  e.  ran  M  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6463eqrdv 2254 . 2  |-  ( ph  ->  ran  M  =  ( T  i^i  ~P C
) )
657adantr 453 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
66 simprl 735 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
t  e.  S )
67 simprr 736 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  ->  u  e.  S )
688, 9, 10, 13, 65, 66, 67mapd11 30959 . . . 4  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  <-> 
t  =  u ) )
6968biimpd 200 . . 3  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
7069ralrimivva 2606 . 2  |-  ( ph  ->  A. t  e.  S  A. u  e.  S  ( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
71 dff1o6 5690 . 2  |-  ( M : S -1-1-onto-> ( T  i^i  ~P C )  <->  ( M  Fn  S  /\  ran  M  =  ( T  i^i  ~P C )  /\  A. t  e.  S  A. u  e.  S  (
( M `  t
)  =  ( M `
 u )  -> 
t  =  u ) ) )
7217, 64, 70, 71syl3anbrc 1141 1  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517   {crab 2519   _Vcvv 2740    i^i cin 3093    C_ wss 3094   ~Pcpw 3566   U_ciun 3846    e. cmpt 4017   ran crn 4627    Fn wfn 4633   -1-1-onto->wf1o 4637   ` cfv 4638   LSubSpclss 15616  LFnlclfn 28377  LKerclk 28405  LDualcld 28443   HLchlt 28670   LHypclh 29303   DVecHcdvh 30398   ocHcoch 30667  mapdcmpd 30944
This theorem is referenced by:  mapdrn  30969  mapdcnvcl  30972  mapdcl  30973  mapdcnvid1N  30974  mapdcnvid2  30977
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-undef 6229  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-n0 9898  df-z 9957  df-uz 10163  df-fz 10714  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-sca 13151  df-vsca 13152  df-0g 13331  df-mre 13415  df-mrc 13416  df-acs 13418  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-mnd 14294  df-submnd 14343  df-grp 14416  df-minusg 14417  df-sbg 14418  df-subg 14545  df-cntz 14720  df-oppg 14746  df-lsm 14874  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-invr 15381  df-dvr 15392  df-drng 15441  df-lmod 15556  df-lss 15617  df-lsp 15656  df-lvec 15783  df-lsatoms 28296  df-lshyp 28297  df-lcv 28339  df-lfl 28378  df-lkr 28406  df-ldual 28444  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-tgrp 30062  df-tendo 30074  df-edring 30076  df-dveca 30322  df-disoa 30349  df-dvech 30399  df-dib 30459  df-dic 30493  df-dih 30549  df-doch 30668  df-djh 30715  df-mapd 30945
  Copyright terms: Public domain W3C validator