Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdat Unicode version

Theorem mapdat 30616
Description: Atoms are preserved by the map defined by df-mapd 30574. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdat.h  |-  H  =  ( LHyp `  K
)
mapdat.m  |-  M  =  ( (mapd `  K
) `  W )
mapdat.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdat.a  |-  A  =  (LSAtoms `  U )
mapdat.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdat.b  |-  B  =  (LSAtoms `  C )
mapdat.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdat.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
mapdat  |-  ( ph  ->  ( M `  Q
)  e.  B )

Proof of Theorem mapdat
StepHypRef Expression
1 mapdat.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdat.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdat.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2253 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
5 mapdat.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
6 eqid 2253 . . . 4  |-  ( 0g
`  C )  =  ( 0g `  C
)
7 mapdat.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
81, 2, 3, 4, 5, 6, 7mapd0 30614 . . 3  |-  ( ph  ->  ( M `  {
( 0g `  U
) } )  =  { ( 0g `  C ) } )
9 mapdat.a . . . . 5  |-  A  =  (LSAtoms `  U )
10 eqid 2253 . . . . 5  |-  (  <oLL  `  U
)  =  (  <oLL  `  U
)
111, 3, 7dvhlvec 30058 . . . . 5  |-  ( ph  ->  U  e.  LVec )
12 mapdat.q . . . . 5  |-  ( ph  ->  Q  e.  A )
134, 9, 10, 11, 12lsatcv0 27980 . . . 4  |-  ( ph  ->  { ( 0g `  U ) }  (  <oLL  `  U ) Q )
14 eqid 2253 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
15 eqid 2253 . . . . 5  |-  (  <oLL  `  C
)  =  (  <oLL  `  C
)
161, 3, 7dvhlmod 30059 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
174, 14lsssn0 15540 . . . . . 6  |-  ( U  e.  LMod  ->  { ( 0g `  U ) }  e.  ( LSubSp `  U ) )
1816, 17syl 17 . . . . 5  |-  ( ph  ->  { ( 0g `  U ) }  e.  ( LSubSp `  U )
)
1914, 9, 16, 12lsatlssel 27946 . . . . 5  |-  ( ph  ->  Q  e.  ( LSubSp `  U ) )
201, 2, 3, 14, 10, 5, 15, 7, 18, 19mapdcv 30609 . . . 4  |-  ( ph  ->  ( { ( 0g
`  U ) }  (  <oLL  `  U ) Q  <-> 
( M `  {
( 0g `  U
) } ) ( 
<oLL  `  C ) ( M `
 Q ) ) )
2113, 20mpbid 203 . . 3  |-  ( ph  ->  ( M `  {
( 0g `  U
) } ) ( 
<oLL  `  C ) ( M `
 Q ) )
228, 21eqbrtrrd 3942 . 2  |-  ( ph  ->  { ( 0g `  C ) }  (  <oLL  `  C ) ( M `
 Q ) )
23 eqid 2253 . . 3  |-  ( LSubSp `  C )  =  (
LSubSp `  C )
24 mapdat.b . . 3  |-  B  =  (LSAtoms `  C )
251, 5, 7lcdlvec 30540 . . 3  |-  ( ph  ->  C  e.  LVec )
261, 2, 3, 14, 5, 23, 7, 19mapdcl2 30605 . . 3  |-  ( ph  ->  ( M `  Q
)  e.  ( LSubSp `  C ) )
276, 23, 24, 15, 25, 26lsat0cv 27982 . 2  |-  ( ph  ->  ( ( M `  Q )  e.  B  <->  { ( 0g `  C
) }  (  <oLL  `  C
) ( M `  Q ) ) )
2822, 27mpbird 225 1  |-  ( ph  ->  ( M `  Q
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {csn 3544   class class class wbr 3920   ` cfv 4592   0gc0g 13274   LModclmod 15462   LSubSpclss 15524  LSAtomsclsa 27923    <oLL clcv 27967   HLchlt 28299   LHypclh 28932   DVecHcdvh 30027  LCDualclcd 30535  mapdcmpd 30573
This theorem is referenced by:  mapdspex  30617  mapdpglem5N  30626  mapdpglem20  30640  mapdpglem30a  30644  mapdpglem30b  30645
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-undef 6182  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-sca 13098  df-vsca 13099  df-0g 13278  df-mre 13361  df-mrc 13362  df-acs 13363  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-mnd 14202  df-submnd 14251  df-grp 14324  df-minusg 14325  df-sbg 14326  df-subg 14453  df-cntz 14628  df-oppg 14654  df-lsm 14782  df-cmn 14926  df-abl 14927  df-mgp 15161  df-ring 15175  df-ur 15177  df-oppr 15240  df-dvdsr 15258  df-unit 15259  df-invr 15289  df-dvr 15300  df-drng 15349  df-lmod 15464  df-lss 15525  df-lsp 15564  df-lvec 15691  df-lsatoms 27925  df-lshyp 27926  df-lcv 27968  df-lfl 28007  df-lkr 28035  df-ldual 28073  df-oposet 28125  df-ol 28127  df-oml 28128  df-covers 28215  df-ats 28216  df-atl 28247  df-cvlat 28271  df-hlat 28300  df-llines 28446  df-lplanes 28447  df-lvols 28448  df-lines 28449  df-psubsp 28451  df-pmap 28452  df-padd 28744  df-lhyp 28936  df-laut 28937  df-ldil 29052  df-ltrn 29053  df-trl 29107  df-tgrp 29691  df-tendo 29703  df-edring 29705  df-dveca 29951  df-disoa 29978  df-dvech 30028  df-dib 30088  df-dic 30122  df-dih 30178  df-doch 30297  df-djh 30344  df-lcdual 30536  df-mapd 30574
  Copyright terms: Public domain W3C validator