Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6aN Unicode version

Theorem mapdh6aN 31851
Description: Lemma for mapdh6N 31863. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdhe6.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe6.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdhe6.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdh6aN  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x   
.+b , h    h, I    .+ , h, x
Allowed substitution hints:    ph( x)    C( x)   
.+b ( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh6aN
StepHypRef Expression
1 mapdh.q . . . 4  |-  Q  =  ( 0g `  C
)
2 mapdh.i . . . 4  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
4 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
5 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
6 mapdh.v . . . 4  |-  V  =  ( Base `  U
)
7 mapdh.s . . . 4  |-  .-  =  ( -g `  U )
8 mapdhc.o . . . 4  |-  .0.  =  ( 0g `  U )
9 mapdh.n . . . 4  |-  N  =  ( LSpan `  U )
10 mapdh.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
11 mapdh.d . . . 4  |-  D  =  ( Base `  C
)
12 mapdh.r . . . 4  |-  R  =  ( -g `  C
)
13 mapdh.j . . . 4  |-  J  =  ( LSpan `  C )
14 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 mapdhc.f . . . 4  |-  ( ph  ->  F  e.  D )
16 mapdh.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
17 mapdhcl.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
18 mapdh.p . . . 4  |-  .+  =  ( +g  `  U )
19 mapdh.a . . . 4  |-  .+b  =  ( +g  `  C )
20 mapdhe6.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
21 mapdhe6.z . . . 4  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
22 mapdhe6.xn . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
23 mapdh6.yz . . . 4  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
24 mapdh6.fg . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
25 mapdh6.fe . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6lem2N 31850 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( G  .+b  E ) } ) )
2724, 25oveq12d 6039 . . . . 5  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( G 
.+b  E ) )
2827sneqd 3771 . . . 4  |-  ( ph  ->  { ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) }  =  {
( G  .+b  E
) } )
2928fveq2d 5673 . . 3  |-  ( ph  ->  ( J `  {
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) } )  =  ( J `  {
( G  .+b  E
) } ) )
3026, 29eqtr4d 2423 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) } ) )
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6lem1N 31849 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
3227oveq2d 6037 . . . . 5  |-  ( ph  ->  ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )  =  ( F R ( G  .+b  E
) ) )
3332sneqd 3771 . . . 4  |-  ( ph  ->  { ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) }  =  { ( F R ( G  .+b  E
) ) } )
3433fveq2d 5673 . . 3  |-  ( ph  ->  ( J `  {
( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) ) } )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
3531, 34eqtr4d 2423 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( ( I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) ) } ) )
363, 5, 14dvhlmod 31226 . . . . 5  |-  ( ph  ->  U  e.  LMod )
3720eldifad 3276 . . . . 5  |-  ( ph  ->  Y  e.  V )
3821eldifad 3276 . . . . 5  |-  ( ph  ->  Z  e.  V )
396, 18lmodvacl 15892 . . . . 5  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
4036, 37, 38, 39syl3anc 1184 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
416, 18, 8, 9, 36, 37, 38, 23lmodindp1 16018 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  =/=  .0.  )
42 eldifsn 3871 . . . 4  |-  ( ( Y  .+  Z )  e.  ( V  \  {  .0.  } )  <->  ( ( Y  .+  Z )  e.  V  /\  ( Y 
.+  Z )  =/= 
.0.  ) )
4340, 41, 42sylanbrc 646 . . 3  |-  ( ph  ->  ( Y  .+  Z
)  e.  ( V 
\  {  .0.  }
) )
443, 10, 14lcdlmod 31708 . . . 4  |-  ( ph  ->  C  e.  LMod )
453, 5, 14dvhlvec 31225 . . . . . . 7  |-  ( ph  ->  U  e.  LVec )
4617eldifad 3276 . . . . . . 7  |-  ( ph  ->  X  e.  V )
476, 8, 9, 45, 37, 21, 46, 23, 22lspindp2 16135 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
4847simpld 446 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 37, 48mapdhcl 31843 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
506, 8, 9, 45, 20, 38, 46, 23, 22lspindp1 16133 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5150simpld 446 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 38, 51mapdhcl 31843 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
5311, 19lmodvacl 15892 . . . 4  |-  ( ( C  e.  LMod  /\  (
I `  <. X ,  F ,  Y >. )  e.  D  /\  (
I `  <. X ,  F ,  Z >. )  e.  D )  -> 
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
5444, 49, 52, 53syl3anc 1184 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
55 eqid 2388 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
566, 55, 9, 36, 37, 38lspprcl 15982 . . . . . 6  |-  ( ph  ->  ( N `  { Y ,  Z }
)  e.  ( LSubSp `  U ) )
576, 18, 9, 36, 37, 38lspprvacl 16003 . . . . . 6  |-  ( ph  ->  ( Y  .+  Z
)  e.  ( N `
 { Y ,  Z } ) )
5855, 9, 36, 56, 57lspsnel5a 16000 . . . . 5  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  C_  ( N `  { Y ,  Z } ) )
596, 55, 9, 36, 56, 46lspsnel5 15999 . . . . . 6  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  ( N `  { X } ) 
C_  ( N `  { Y ,  Z }
) ) )
6022, 59mtbid 292 . . . . 5  |-  ( ph  ->  -.  ( N `  { X } )  C_  ( N `  { Y ,  Z } ) )
61 nssne2 3349 . . . . 5  |-  ( ( ( N `  {
( Y  .+  Z
) } )  C_  ( N `  { Y ,  Z } )  /\  -.  ( N `  { X } )  C_  ( N `  { Y ,  Z } ) )  ->  ( N `  { ( Y  .+  Z ) } )  =/=  ( N `  { X } ) )
6258, 60, 61syl2anc 643 . . . 4  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  =/=  ( N `  { X } ) )
6362necomd 2634 . . 3  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
641, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 43, 54, 63mapdheq 31844 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F , 
( Y  .+  Z
) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) )  <->  ( ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `
 { ( ( I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) } )  /\  ( M `
 ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) } ) ) ) )
6530, 35, 64mpbir2and 889 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   _Vcvv 2900    \ cdif 3261    C_ wss 3264   ifcif 3683   {csn 3758   {cpr 3759   <.cotp 3762    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   1stc1st 6287   2ndc2nd 6288   iota_crio 6479   Basecbs 13397   +g cplusg 13457   0gc0g 13651   -gcsg 14616   LModclmod 15878   LSubSpclss 15936   LSpanclspn 15975   HLchlt 29466   LHypclh 30099   DVecHcdvh 31194  LCDualclcd 31702  mapdcmpd 31740
This theorem is referenced by:  mapdh6dN  31855  mapdh6eN  31856  mapdh6fN  31857  mapdh6jN  31861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-ot 3768  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-tpos 6416  df-undef 6480  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-n0 10155  df-z 10216  df-uz 10422  df-fz 10977  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-sca 13473  df-vsca 13474  df-0g 13655  df-mre 13739  df-mrc 13740  df-acs 13742  df-poset 14331  df-plt 14343  df-lub 14359  df-glb 14360  df-join 14361  df-meet 14362  df-p0 14396  df-p1 14397  df-lat 14403  df-clat 14465  df-mnd 14618  df-submnd 14667  df-grp 14740  df-minusg 14741  df-sbg 14742  df-subg 14869  df-cntz 15044  df-oppg 15070  df-lsm 15198  df-cmn 15342  df-abl 15343  df-mgp 15577  df-rng 15591  df-ur 15593  df-oppr 15656  df-dvdsr 15674  df-unit 15675  df-invr 15705  df-dvr 15716  df-drng 15765  df-lmod 15880  df-lss 15937  df-lsp 15976  df-lvec 16103  df-lsatoms 29092  df-lshyp 29093  df-lcv 29135  df-lfl 29174  df-lkr 29202  df-ldual 29240  df-oposet 29292  df-ol 29294  df-oml 29295  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467  df-llines 29613  df-lplanes 29614  df-lvols 29615  df-lines 29616  df-psubsp 29618  df-pmap 29619  df-padd 29911  df-lhyp 30103  df-laut 30104  df-ldil 30219  df-ltrn 30220  df-trl 30274  df-tgrp 30858  df-tendo 30870  df-edring 30872  df-dveca 31118  df-disoa 31145  df-dvech 31195  df-dib 31255  df-dic 31289  df-dih 31345  df-doch 31464  df-djh 31511  df-lcdual 31703  df-mapd 31741
  Copyright terms: Public domain W3C validator