Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6lem1N Unicode version

Theorem mapdh6lem1N 31848
Description: Lemma for mapdh6N 31862. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdhe6.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe6.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdhe6.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdh6lem1N  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x   
.+b , h    h, I    .+ , h, x
Allowed substitution hints:    ph( x)    C( x)   
.+b ( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh6lem1N
StepHypRef Expression
1 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2387 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 31225 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 mapdhcl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
87eldifad 3275 . . . . . . 7  |-  ( ph  ->  X  e.  V )
9 mapdhe6.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
109eldifad 3275 . . . . . . 7  |-  ( ph  ->  Y  e.  V )
11 mapdh.v . . . . . . . 8  |-  V  =  ( Base `  U
)
12 mapdh.s . . . . . . . 8  |-  .-  =  ( -g `  U )
1311, 12lmodvsubcl 15916 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
146, 8, 10, 13syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
15 mapdh.n . . . . . . 7  |-  N  =  ( LSpan `  U )
1611, 4, 15lspsncl 15980 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Y )  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U ) )
176, 14, 16syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Y
) } )  e.  ( LSubSp `  U )
)
18 mapdhe6.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
1918eldifad 3275 . . . . . 6  |-  ( ph  ->  Z  e.  V )
2011, 4, 15lspsncl 15980 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
216, 19, 20syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
22 eqid 2387 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
234, 22lsmcl 16082 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Y ) } ) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
246, 17, 21, 23syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  e.  ( LSubSp `  U )
)
2511, 12lmodvsubcl 15916 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Z  e.  V )  ->  ( X  .-  Z )  e.  V )
266, 8, 19, 25syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  .-  Z
)  e.  V )
2711, 4, 15lspsncl 15980 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Z )  e.  V )  ->  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U ) )
286, 26, 27syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Z
) } )  e.  ( LSubSp `  U )
)
2911, 4, 15lspsncl 15980 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
306, 10, 29syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
314, 22lsmcl 16082 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Y } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Z ) } ) ( LSSum `  U
) ( N `  { Y } ) )  e.  ( LSubSp `  U
) )
326, 28, 30, 31syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) )  e.  ( LSubSp `  U )
)
331, 2, 3, 4, 5, 24, 32mapdin 31777 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) ) ) )
34 mapdh.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
35 eqid 2387 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
361, 2, 3, 4, 22, 34, 35, 5, 17, 21mapdlsm 31779 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) ) )
371, 2, 3, 4, 22, 34, 35, 5, 28, 30mapdlsm 31779 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )
3836, 37ineq12d 3486 . . . 4  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( M `  ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Z } ) ) )  i^i  ( ( M `  ( N `
 { ( X 
.-  Z ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Y } ) ) ) ) )
39 mapdh6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
40 mapdh.q . . . . . . . . 9  |-  Q  =  ( 0g `  C
)
41 mapdh.i . . . . . . . . 9  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
42 mapdhc.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
43 mapdh.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
44 mapdh.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
45 mapdh.j . . . . . . . . 9  |-  J  =  ( LSpan `  C )
46 mapdhc.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
47 mapdh.mn . . . . . . . . 9  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
481, 3, 5dvhlvec 31224 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
49 mapdh6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
50 mapdhe6.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
5111, 42, 15, 48, 10, 18, 8, 49, 50lspindp2 16134 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5251simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
5340, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 10, 52mapdhcl 31842 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5439, 53eqeltrrd 2462 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
5540, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 9, 54, 52mapdheq 31843 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) ) )
5639, 55mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) )
5756simprd 450 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  { ( F R G ) } ) )
58 mapdh6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
5911, 42, 15, 48, 9, 19, 8, 49, 50lspindp1 16132 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
6059simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
6140, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 19, 60mapdhcl 31842 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6258, 61eqeltrrd 2462 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
6340, 41, 1, 2, 3, 11, 12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 18, 62, 60mapdheq 31843 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) ) )
6458, 63mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) )
6564simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( J `  { E } ) )
6657, 65oveq12d 6038 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Y ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( J `  { ( F R G ) } ) ( LSSum `  C )
( J `  { E } ) ) )
6764simprd 450 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `  { ( F R E ) } ) )
6856simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )
6967, 68oveq12d 6038 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Z ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Y }
) ) )  =  ( ( J `  { ( F R E ) } ) ( LSSum `  C )
( J `  { G } ) ) )
7066, 69ineq12d 3486 . . . 4  |-  ( ph  ->  ( ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) )  i^i  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )  =  ( ( ( J `  {
( F R G ) } ) (
LSSum `  C ) ( J `  { E } ) )  i^i  ( ( J `  { ( F R E ) } ) ( LSSum `  C )
( J `  { G } ) ) ) )
7138, 70eqtrd 2419 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( J `  {
( F R G ) } ) (
LSSum `  C ) ( J `  { E } ) )  i^i  ( ( J `  { ( F R E ) } ) ( LSSum `  C )
( J `  { G } ) ) ) )
7233, 71eqtrd 2419 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( J `  {
( F R G ) } ) (
LSSum `  C ) ( J `  { E } ) )  i^i  ( ( J `  { ( F R E ) } ) ( LSSum `  C )
( J `  { G } ) ) ) )
73 mapdh.p . . . 4  |-  .+  =  ( +g  `  U )
7411, 12, 42, 22, 15, 48, 8, 50, 49, 9, 18, 73baerlem5a 31829 . . 3  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )
7574fveq2d 5672 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( M `  ( ( ( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) ) )
761, 34, 5lcdlvec 31706 . . 3  |-  ( ph  ->  C  e.  LVec )
771, 2, 3, 11, 15, 34, 43, 45, 5, 46, 47, 8, 10, 54, 68, 19, 62, 65, 50mapdindp 31786 . . 3  |-  ( ph  ->  -.  F  e.  ( J `  { G ,  E } ) )
781, 2, 3, 11, 15, 34, 43, 45, 5, 54, 68, 10, 19, 62, 65, 49mapdncol 31785 . . 3  |-  ( ph  ->  ( J `  { G } )  =/=  ( J `  { E } ) )
791, 2, 3, 11, 15, 34, 43, 45, 5, 54, 68, 42, 40, 9mapdn0 31784 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
801, 2, 3, 11, 15, 34, 43, 45, 5, 62, 65, 42, 40, 18mapdn0 31784 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
81 mapdh.a . . 3  |-  .+b  =  ( +g  `  C )
8243, 44, 40, 35, 45, 76, 46, 77, 78, 79, 80, 81baerlem5a 31829 . 2  |-  ( ph  ->  ( J `  {
( F R ( G  .+b  E )
) } )  =  ( ( ( J `
 { ( F R G ) } ) ( LSSum `  C
) ( J `  { E } ) )  i^i  ( ( J `
 { ( F R E ) } ) ( LSSum `  C
) ( J `  { G } ) ) ) )
8372, 75, 823eqtr4d 2429 1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   _Vcvv 2899    \ cdif 3260    i^i cin 3262   ifcif 3682   {csn 3757   {cpr 3758   <.cotp 3761    e. cmpt 4207   ` cfv 5394  (class class class)co 6020   1stc1st 6286   2ndc2nd 6287   iota_crio 6478   Basecbs 13396   +g cplusg 13456   0gc0g 13650   -gcsg 14615   LSSumclsm 15195   LModclmod 15877   LSubSpclss 15935   LSpanclspn 15974   HLchlt 29465   LHypclh 30098   DVecHcdvh 31193  LCDualclcd 31701  mapdcmpd 31739
This theorem is referenced by:  mapdh6lem2N  31849  mapdh6aN  31850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-ot 3767  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-tpos 6415  df-undef 6479  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-0g 13654  df-mre 13738  df-mrc 13739  df-acs 13741  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-mnd 14617  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-subg 14868  df-cntz 15043  df-oppg 15069  df-lsm 15197  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-dvr 15715  df-drng 15764  df-lmod 15879  df-lss 15936  df-lsp 15975  df-lvec 16102  df-lsatoms 29091  df-lshyp 29092  df-lcv 29134  df-lfl 29173  df-lkr 29201  df-ldual 29239  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-lplanes 29613  df-lvols 29614  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273  df-tgrp 30857  df-tendo 30869  df-edring 30871  df-dveca 31117  df-disoa 31144  df-dvech 31194  df-dib 31254  df-dic 31288  df-dih 31344  df-doch 31463  df-djh 31510  df-lcdual 31702  df-mapd 31740
  Copyright terms: Public domain W3C validator