Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6lem2N Unicode version

Theorem mapdh6lem2N 31851
Description: Lemma for mapdh6N 31864. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdhe6.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe6.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdhe6.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdh6lem2N  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( G  .+b  E ) } ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x   
.+b , h    h, I    .+ , h, x
Allowed substitution hints:    ph( x)    C( x)   
.+b ( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh6lem2N
StepHypRef Expression
1 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2389 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 31227 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 mapdhe6.y . . . . . . 7  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
87eldifad 3277 . . . . . 6  |-  ( ph  ->  Y  e.  V )
9 mapdh.v . . . . . . 7  |-  V  =  ( Base `  U
)
10 mapdh.n . . . . . . 7  |-  N  =  ( LSpan `  U )
119, 4, 10lspsncl 15982 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
126, 8, 11syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
13 mapdhe6.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
1413eldifad 3277 . . . . . 6  |-  ( ph  ->  Z  e.  V )
159, 4, 10lspsncl 15982 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
166, 14, 15syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
17 eqid 2389 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
184, 17lsmcl 16084 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { Y } )  e.  (
LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
196, 12, 16, 18syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  e.  ( LSubSp `  U )
)
20 mapdhcl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2120eldifad 3277 . . . . . . 7  |-  ( ph  ->  X  e.  V )
22 mapdh.p . . . . . . . . 9  |-  .+  =  ( +g  `  U )
239, 22lmodvacl 15893 . . . . . . . 8  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
246, 8, 14, 23syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
25 mapdh.s . . . . . . . 8  |-  .-  =  ( -g `  U )
269, 25lmodvsubcl 15918 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  ( Y  .+  Z )  e.  V )  ->  ( X  .-  ( Y  .+  Z ) )  e.  V )
276, 21, 24, 26syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  .-  ( Y  .+  Z ) )  e.  V )
289, 4, 10lspsncl 15982 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  ( Y  .+  Z ) )  e.  V )  ->  ( N `  { ( X  .-  ( Y  .+  Z ) ) } )  e.  ( LSubSp `  U ) )
296, 27, 28syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  e.  (
LSubSp `  U ) )
309, 4, 10lspsncl 15982 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
316, 21, 30syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
324, 17lsmcl 16084 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  ( Y  .+  Z ) ) } )  e.  ( LSubSp `  U )  /\  ( N `  { X } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  ( Y  .+  Z ) ) } ) ( LSSum `  U
) ( N `  { X } ) )  e.  ( LSubSp `  U
) )
336, 29, 31, 32syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) )  e.  ( LSubSp `  U )
)
341, 2, 3, 4, 5, 19, 33mapdin 31779 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( M `  ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) ) ) )
35 mapdh.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
36 eqid 2389 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 31781 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) ) )
38 mapdh6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
39 mapdh.q . . . . . . . . 9  |-  Q  =  ( 0g `  C
)
40 mapdh.i . . . . . . . . 9  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
41 mapdhc.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
42 mapdh.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
43 mapdh.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
44 mapdh.j . . . . . . . . 9  |-  J  =  ( LSpan `  C )
45 mapdhc.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
46 mapdh.mn . . . . . . . . 9  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
471, 3, 5dvhlvec 31226 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
48 mapdh6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
49 mapdhe6.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
509, 41, 10, 47, 8, 13, 21, 48, 49lspindp2 16136 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5150simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
5239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 8, 51mapdhcl 31844 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5338, 52eqeltrrd 2464 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
5439, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 7, 53, 51mapdheq 31845 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) ) )
5538, 54mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) )
5655simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )
57 mapdh6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
589, 41, 10, 47, 7, 14, 21, 48, 49lspindp1 16134 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5958simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
6039, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 14, 59mapdhcl 31844 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6157, 60eqeltrrd 2464 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
6239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 13, 61, 59mapdheq 31845 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) ) )
6357, 62mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) )
6463simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( J `  { E } ) )
6556, 64oveq12d 6040 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) ) )
6637, 65eqtrd 2421 . . . 4  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) ) )
671, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 31781 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) )  =  ( ( M `  ( N `  { ( X  .-  ( Y 
.+  Z ) ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { X }
) ) ) )
68 mapdh.a . . . . . . 7  |-  .+b  =  ( +g  `  C )
6939, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 22, 68, 7, 13, 49, 48, 38, 57mapdh6lem1N 31850 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
7069, 46oveq12d 6040 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  ( Y 
.+  Z ) ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { X }
) ) )  =  ( ( J `  { ( F R ( G  .+b  E
) ) } ) ( LSSum `  C )
( J `  { F } ) ) )
7167, 70eqtrd 2421 . . . 4  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) )  =  ( ( J `  { ( F R ( G  .+b  E
) ) } ) ( LSSum `  C )
( J `  { F } ) ) )
7266, 71ineq12d 3488 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( ( J `  { G } ) ( LSSum `  C ) ( J `
 { E }
) )  i^i  (
( J `  {
( F R ( G  .+b  E )
) } ) (
LSSum `  C ) ( J `  { F } ) ) ) )
7334, 72eqtrd 2421 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( ( J `  { G } ) ( LSSum `  C ) ( J `
 { E }
) )  i^i  (
( J `  {
( F R ( G  .+b  E )
) } ) (
LSSum `  C ) ( J `  { F } ) ) ) )
749, 25, 41, 17, 10, 47, 21, 49, 48, 7, 13, 22baerlem5b 31832 . . 3  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  =  ( ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  ( Y  .+  Z ) ) } ) ( LSSum `  U
) ( N `  { X } ) ) ) )
7574fveq2d 5674 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( M `  ( ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) )  i^i  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) ) ) )
761, 35, 5lcdlvec 31708 . . 3  |-  ( ph  ->  C  e.  LVec )
771, 2, 3, 9, 10, 35, 42, 44, 5, 45, 46, 21, 8, 53, 56, 14, 61, 64, 49mapdindp 31788 . . 3  |-  ( ph  ->  -.  F  e.  ( J `  { G ,  E } ) )
781, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 8, 14, 61, 64, 48mapdncol 31787 . . 3  |-  ( ph  ->  ( J `  { G } )  =/=  ( J `  { E } ) )
791, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 41, 39, 7mapdn0 31786 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
801, 2, 3, 9, 10, 35, 42, 44, 5, 61, 64, 41, 39, 13mapdn0 31786 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
8142, 43, 39, 36, 44, 76, 45, 77, 78, 79, 80, 68baerlem5b 31832 . 2  |-  ( ph  ->  ( J `  {
( G  .+b  E
) } )  =  ( ( ( J `
 { G }
) ( LSSum `  C
) ( J `  { E } ) )  i^i  ( ( J `
 { ( F R ( G  .+b  E ) ) } ) ( LSSum `  C )
( J `  { F } ) ) ) )
8273, 75, 813eqtr4d 2431 1  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( G  .+b  E ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   _Vcvv 2901    \ cdif 3262    i^i cin 3264   ifcif 3684   {csn 3759   {cpr 3760   <.cotp 3763    e. cmpt 4209   ` cfv 5396  (class class class)co 6022   1stc1st 6288   2ndc2nd 6289   iota_crio 6480   Basecbs 13398   +g cplusg 13458   0gc0g 13652   -gcsg 14617   LSSumclsm 15197   LModclmod 15879   LSubSpclss 15937   LSpanclspn 15976   HLchlt 29467   LHypclh 30100   DVecHcdvh 31195  LCDualclcd 31703  mapdcmpd 31741
This theorem is referenced by:  mapdh6aN  31852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-ot 3769  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-tpos 6417  df-undef 6481  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-sca 13474  df-vsca 13475  df-0g 13656  df-mre 13740  df-mrc 13741  df-acs 13743  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-mnd 14619  df-submnd 14668  df-grp 14741  df-minusg 14742  df-sbg 14743  df-subg 14870  df-cntz 15045  df-oppg 15071  df-lsm 15199  df-cmn 15343  df-abl 15344  df-mgp 15578  df-rng 15592  df-ur 15594  df-oppr 15657  df-dvdsr 15675  df-unit 15676  df-invr 15706  df-dvr 15717  df-drng 15766  df-lmod 15881  df-lss 15938  df-lsp 15977  df-lvec 16104  df-lsatoms 29093  df-lshyp 29094  df-lcv 29136  df-lfl 29175  df-lkr 29203  df-ldual 29241  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-lvols 29616  df-lines 29617  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275  df-tgrp 30859  df-tendo 30871  df-edring 30873  df-dveca 31119  df-disoa 31146  df-dvech 31196  df-dib 31256  df-dic 31290  df-dih 31346  df-doch 31465  df-djh 31512  df-lcdual 31704  df-mapd 31742
  Copyright terms: Public domain W3C validator