Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh75e Unicode version

Theorem mapdh75e 31210
Description: Part (7) of [Baer] p. 48 line 10 (5 of 6 cases).  X,  Y,  Z are Baer's u, v, w. (Note: Cases 1 of 6 and 2 of 6 are hypotheses mapdh75b here and mapdh75a in mapdh75cN 31211.) (Contributed by NM, 2-May-2015.)
Hypotheses
Ref Expression
mapdh75.h  |-  H  =  ( LHyp `  K
)
mapdh75.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh75.v  |-  V  =  ( Base `  U
)
mapdh75.s  |-  .-  =  ( -g `  U )
mapdh75.o  |-  .0.  =  ( 0g `  U )
mapdh75.n  |-  N  =  ( LSpan `  U )
mapdh75.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh75.d  |-  D  =  ( Base `  C
)
mapdh75.r  |-  R  =  ( -g `  C
)
mapdh75.q  |-  Q  =  ( 0g `  C
)
mapdh75.j  |-  J  =  ( LSpan `  C )
mapdh75.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh75.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh75.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdh75.f  |-  ( ph  ->  F  e.  D )
mapdh75.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdh75b  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
mapdh75e.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
mapdh75e.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh75e.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
mapdh75e  |-  ( ph  ->  ( I `  <. Z ,  E ,  X >. )  =  F )
Distinct variable groups:    x, h,  .-    C, h    D, h, x   
h, E, x    h, F, x    .0. , h, x   
h, J, x    h, M, x    h, N, x    ph, h    x, Q    R, h, x    U, h    h, X, x    h, Z, x
Allowed substitution hints:    ph( x)    C( x)    Q( h)    U( x)    H( x, h)    I( x, h)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh75e
StepHypRef Expression
1 mapdh75b . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
2 mapdh75.q . . 3  |-  Q  =  ( 0g `  C
)
3 mapdh75.i . . 3  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
4 mapdh75.h . . 3  |-  H  =  ( LHyp `  K
)
5 mapdh75.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
6 mapdh75.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
7 mapdh75.v . . 3  |-  V  =  ( Base `  U
)
8 mapdh75.s . . 3  |-  .-  =  ( -g `  U )
9 mapdh75.o . . 3  |-  .0.  =  ( 0g `  U )
10 mapdh75.n . . 3  |-  N  =  ( LSpan `  U )
11 mapdh75.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
12 mapdh75.d . . 3  |-  D  =  ( Base `  C
)
13 mapdh75.r . . 3  |-  R  =  ( -g `  C
)
14 mapdh75.j . . 3  |-  J  =  ( LSpan `  C )
15 mapdh75.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
16 mapdh75.f . . 3  |-  ( ph  ->  F  e.  D )
17 mapdh75.mn . . 3  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
18 mapdh75e.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 mapdh75e.z . . 3  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
20 eldifi 3300 . . . . . 6  |-  ( Z  e.  ( V  \  {  .0.  } )  ->  Z  e.  V )
2119, 20syl 17 . . . . 5  |-  ( ph  ->  Z  e.  V )
22 mapdh75e.ne . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
232, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22mapdhcl 31185 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
241, 23eqeltrrd 2360 . . 3  |-  ( ph  ->  E  e.  D )
252, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 22mapdheq2 31187 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  ->  ( I `  <. Z ,  E ,  X >. )  =  F ) )
261, 25mpd 16 1  |-  ( ph  ->  ( I `  <. Z ,  E ,  X >. )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   _Vcvv 2790    \ cdif 3151   ifcif 3567   {csn 3642   <.cotp 3646    e. cmpt 4079   ` cfv 5222  (class class class)co 5820   1stc1st 6082   2ndc2nd 6083   iota_crio 6291   Basecbs 13143   0gc0g 13395   -gcsg 14360   LSpanclspn 15723   HLchlt 28808   LHypclh 29441   DVecHcdvh 30536  LCDualclcd 31044  mapdcmpd 31082
This theorem is referenced by:  mapdh75cN  31211  mapdh75fN  31213  hdmap1eq2  31264
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-ot 3652  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-undef 6292  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10778  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-sca 13219  df-vsca 13220  df-0g 13399  df-mre 13483  df-mrc 13484  df-acs 13486  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-mnd 14362  df-submnd 14411  df-grp 14484  df-minusg 14485  df-sbg 14486  df-subg 14613  df-cntz 14788  df-oppg 14814  df-lsm 14942  df-cmn 15086  df-abl 15087  df-mgp 15321  df-rng 15335  df-ur 15337  df-oppr 15400  df-dvdsr 15418  df-unit 15419  df-invr 15449  df-dvr 15460  df-drng 15509  df-lmod 15624  df-lss 15685  df-lsp 15724  df-lvec 15851  df-lsatoms 28434  df-lshyp 28435  df-lcv 28477  df-lfl 28516  df-lkr 28544  df-ldual 28582  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-llines 28955  df-lplanes 28956  df-lvols 28957  df-lines 28958  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445  df-laut 29446  df-ldil 29561  df-ltrn 29562  df-trl 29616  df-tgrp 30200  df-tendo 30212  df-edring 30214  df-dveca 30460  df-disoa 30487  df-dvech 30537  df-dib 30597  df-dic 30631  df-dih 30687  df-doch 30806  df-djh 30853  df-lcdual 31045  df-mapd 31083
  Copyright terms: Public domain W3C validator