Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh7cN Unicode version

Theorem mapdh7cN 30740
Description: Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh7.h  |-  H  =  ( LHyp `  K
)
mapdh7.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh7.v  |-  V  =  ( Base `  U
)
mapdh7.s  |-  .-  =  ( -g `  U )
mapdh7.o  |-  .0.  =  ( 0g `  U )
mapdh7.n  |-  N  =  ( LSpan `  U )
mapdh7.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh7.d  |-  D  =  ( Base `  C
)
mapdh7.r  |-  R  =  ( -g `  C
)
mapdh7.q  |-  Q  =  ( 0g `  C
)
mapdh7.j  |-  J  =  ( LSpan `  C )
mapdh7.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh7.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh7.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdh7.f  |-  ( ph  ->  F  e.  D )
mapdh7.mn  |-  ( ph  ->  ( M `  ( N `  { u } ) )  =  ( J `  { F } ) )
mapdh7.x  |-  ( ph  ->  u  e.  ( V 
\  {  .0.  }
) )
mapdh7.y  |-  ( ph  ->  v  e.  ( V 
\  {  .0.  }
) )
mapdh7.z  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
mapdh7.ne  |-  ( ph  ->  ( N `  {
u } )  =/=  ( N `  {
v } ) )
mapdh7.wn  |-  ( ph  ->  -.  w  e.  ( N `  { u ,  v } ) )
mapdh7a  |-  ( ph  ->  ( I `  <. u ,  F ,  v
>. )  =  G
)
Assertion
Ref Expression
mapdh7cN  |-  ( ph  ->  ( I `  <. v ,  G ,  u >. )  =  F )
Distinct variable groups:    x, h,  .-    C, h    D, h, x   
h, F, x    h, G, x    .0. , h, x   
h, J, x    h, M, x    h, N, x    ph, h    x, Q    u, h, v, w, x    R, h, x    U, h
Allowed substitution hints:    ph( x, w, v, u)    C( x, w, v, u)    D( w, v, u)    Q( w, v, u, h)    R( w, v, u)    U( x, w, v, u)    F( w, v, u)    G( w, v, u)    H( x, w, v, u, h)    I( x, w, v, u, h)    J( w, v, u)    K( x, w, v, u, h)    M( w, v, u)    .- ( w, v, u)    N( w, v, u)    V( x, w, v, u, h)    W( x, w, v, u, h)    .0. ( w, v, u)

Proof of Theorem mapdh7cN
StepHypRef Expression
1 mapdh7a . 2  |-  ( ph  ->  ( I `  <. u ,  F ,  v
>. )  =  G
)
2 mapdh7.q . . 3  |-  Q  =  ( 0g `  C
)
3 mapdh7.i . . 3  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
4 mapdh7.h . . 3  |-  H  =  ( LHyp `  K
)
5 mapdh7.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
6 mapdh7.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
7 mapdh7.v . . 3  |-  V  =  ( Base `  U
)
8 mapdh7.s . . 3  |-  .-  =  ( -g `  U )
9 mapdh7.o . . 3  |-  .0.  =  ( 0g `  U )
10 mapdh7.n . . 3  |-  N  =  ( LSpan `  U )
11 mapdh7.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
12 mapdh7.d . . 3  |-  D  =  ( Base `  C
)
13 mapdh7.r . . 3  |-  R  =  ( -g `  C
)
14 mapdh7.j . . 3  |-  J  =  ( LSpan `  C )
15 mapdh7.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
16 mapdh7.f . . 3  |-  ( ph  ->  F  e.  D )
17 mapdh7.mn . . 3  |-  ( ph  ->  ( M `  ( N `  { u } ) )  =  ( J `  { F } ) )
18 mapdh7.x . . 3  |-  ( ph  ->  u  e.  ( V 
\  {  .0.  }
) )
19 mapdh7.y . . 3  |-  ( ph  ->  v  e.  ( V 
\  {  .0.  }
) )
20 eldifi 3215 . . . . . 6  |-  ( v  e.  ( V  \  {  .0.  } )  -> 
v  e.  V )
2119, 20syl 17 . . . . 5  |-  ( ph  ->  v  e.  V )
22 mapdh7.ne . . . . 5  |-  ( ph  ->  ( N `  {
u } )  =/=  ( N `  {
v } ) )
232, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22mapdhcl 30718 . . . 4  |-  ( ph  ->  ( I `  <. u ,  F ,  v
>. )  e.  D
)
241, 23eqeltrrd 2328 . . 3  |-  ( ph  ->  G  e.  D )
252, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 22mapdheq2 30720 . 2  |-  ( ph  ->  ( ( I `  <. u ,  F , 
v >. )  =  G  ->  ( I `  <. v ,  G ,  u >. )  =  F ) )
261, 25mpd 16 1  |-  ( ph  ->  ( I `  <. v ,  G ,  u >. )  =  F )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727    \ cdif 3075   ifcif 3470   {csn 3544   {cpr 3545   <.cotp 3548    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   1stc1st 5972   2ndc2nd 5973   iota_crio 6181   Basecbs 13022   0gc0g 13274   -gcsg 14200   LSpanclspn 15563   HLchlt 28341   LHypclh 28974   DVecHcdvh 30069  LCDualclcd 30577  mapdcmpd 30615
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-ot 3554  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-undef 6182  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-sca 13098  df-vsca 13099  df-0g 13278  df-mre 13361  df-mrc 13362  df-acs 13363  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-mnd 14202  df-submnd 14251  df-grp 14324  df-minusg 14325  df-sbg 14326  df-subg 14453  df-cntz 14628  df-oppg 14654  df-lsm 14782  df-cmn 14926  df-abl 14927  df-mgp 15161  df-ring 15175  df-ur 15177  df-oppr 15240  df-dvdsr 15258  df-unit 15259  df-invr 15289  df-dvr 15300  df-drng 15349  df-lmod 15464  df-lss 15525  df-lsp 15564  df-lvec 15691  df-lsatoms 27967  df-lshyp 27968  df-lcv 28010  df-lfl 28049  df-lkr 28077  df-ldual 28115  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-llines 28488  df-lplanes 28489  df-lvols 28490  df-lines 28491  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978  df-laut 28979  df-ldil 29094  df-ltrn 29095  df-trl 29149  df-tgrp 29733  df-tendo 29745  df-edring 29747  df-dveca 29993  df-disoa 30020  df-dvech 30070  df-dib 30130  df-dic 30164  df-dih 30220  df-doch 30339  df-djh 30386  df-lcdual 30578  df-mapd 30616
  Copyright terms: Public domain W3C validator