Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4 Unicode version

Theorem mapdheq4 32227
Description: Lemma for ~? mapdh . Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdhe4.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh.eg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh.ee  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdheq4  |-  ( ph  ->  ( I `  <. Y ,  G ,  Z >. )  =  E )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x
Allowed substitution hints:    ph( x)    C( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x, h)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdheq4
StepHypRef Expression
1 mapdh.ee . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
2 mapdh.q . . . . 5  |-  Q  =  ( 0g `  C
)
3 mapdh.i . . . . 5  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
4 mapdh.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 mapdh.m . . . . 5  |-  M  =  ( (mapd `  K
) `  W )
6 mapdh.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
7 mapdh.v . . . . 5  |-  V  =  ( Base `  U
)
8 mapdh.s . . . . 5  |-  .-  =  ( -g `  U )
9 mapdhc.o . . . . 5  |-  .0.  =  ( 0g `  U )
10 mapdh.n . . . . 5  |-  N  =  ( LSpan `  U )
11 mapdh.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
12 mapdh.d . . . . 5  |-  D  =  ( Base `  C
)
13 mapdh.r . . . . 5  |-  R  =  ( -g `  C
)
14 mapdh.j . . . . 5  |-  J  =  ( LSpan `  C )
15 mapdh.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
16 mapdhc.f . . . . 5  |-  ( ph  ->  F  e.  D )
17 mapdh.mn . . . . 5  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
18 mapdhcl.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 mapdhe.z . . . . 5  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
2019eldifad 3300 . . . . . . 7  |-  ( ph  ->  Z  e.  V )
214, 6, 15dvhlvec 31604 . . . . . . . . 9  |-  ( ph  ->  U  e.  LVec )
22 mapdhe4.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
2318eldifad 3300 . . . . . . . . 9  |-  ( ph  ->  X  e.  V )
24 mapdh.yz . . . . . . . . 9  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
25 mapdh.xn . . . . . . . . 9  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
267, 9, 10, 21, 22, 20, 23, 24, 25lspindp1 16168 . . . . . . . 8  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
2726simpld 446 . . . . . . 7  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
282, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 27mapdhcl 32222 . . . . . 6  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
291, 28eqeltrrd 2487 . . . . 5  |-  ( ph  ->  E  e.  D )
302, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 29, 27mapdheq 32223 . . . 4  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) ) )
311, 30mpbid 202 . . 3  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) )
3231simpld 446 . 2  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( J `  { E } ) )
33 mapdh.eg . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
342, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 19, 25, 24, 33, 1mapdheq4lem 32226 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .-  Z ) } ) )  =  ( J `  { ( G R E ) } ) )
3522eldifad 3300 . . . . 5  |-  ( ph  ->  Y  e.  V )
367, 9, 10, 21, 35, 19, 23, 24, 25lspindp2 16170 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
3736simpld 446 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
382, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 35, 37mapdhcl 32222 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
3933, 38eqeltrrd 2487 . . 3  |-  ( ph  ->  G  e.  D )
402, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 39, 37mapdheq 32223 . . . . 5  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) ) )
4133, 40mpbid 202 . . . 4  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) )
4241simpld 446 . . 3  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )
432, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 39, 42, 22, 19, 29, 24mapdheq 32223 . 2  |-  ( ph  ->  ( ( I `  <. Y ,  G ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( Y  .-  Z ) } ) )  =  ( J `
 { ( G R E ) } ) ) ) )
4432, 34, 43mpbir2and 889 1  |-  ( ph  ->  ( I `  <. Y ,  G ,  Z >. )  =  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2575   _Vcvv 2924    \ cdif 3285   ifcif 3707   {csn 3782   {cpr 3783   <.cotp 3786    e. cmpt 4234   ` cfv 5421  (class class class)co 6048   1stc1st 6314   2ndc2nd 6315   iota_crio 6509   Basecbs 13432   0gc0g 13686   -gcsg 14651   LSpanclspn 16010   HLchlt 29845   LHypclh 30478   DVecHcdvh 31573  LCDualclcd 32081  mapdcmpd 32119
This theorem is referenced by:  mapdh7dN  32245  mapdh75d  32249  mapdh8a  32270  hdmap1eq4N  32302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-ot 3792  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-1st 6316  df-2nd 6317  df-tpos 6446  df-undef 6510  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-n0 10186  df-z 10247  df-uz 10453  df-fz 11008  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-mulr 13506  df-sca 13508  df-vsca 13509  df-0g 13690  df-mre 13774  df-mrc 13775  df-acs 13777  df-poset 14366  df-plt 14378  df-lub 14394  df-glb 14395  df-join 14396  df-meet 14397  df-p0 14431  df-p1 14432  df-lat 14438  df-clat 14500  df-mnd 14653  df-submnd 14702  df-grp 14775  df-minusg 14776  df-sbg 14777  df-subg 14904  df-cntz 15079  df-oppg 15105  df-lsm 15233  df-cmn 15377  df-abl 15378  df-mgp 15612  df-rng 15626  df-ur 15628  df-oppr 15691  df-dvdsr 15709  df-unit 15710  df-invr 15740  df-dvr 15751  df-drng 15800  df-lmod 15915  df-lss 15972  df-lsp 16011  df-lvec 16138  df-lsatoms 29471  df-lshyp 29472  df-lcv 29514  df-lfl 29553  df-lkr 29581  df-ldual 29619  df-oposet 29671  df-ol 29673  df-oml 29674  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846  df-llines 29992  df-lplanes 29993  df-lvols 29994  df-lines 29995  df-psubsp 29997  df-pmap 29998  df-padd 30290  df-lhyp 30482  df-laut 30483  df-ldil 30598  df-ltrn 30599  df-trl 30653  df-tgrp 31237  df-tendo 31249  df-edring 31251  df-dveca 31497  df-disoa 31524  df-dvech 31574  df-dib 31634  df-dic 31668  df-dih 31724  df-doch 31843  df-djh 31890  df-lcdual 32082  df-mapd 32120
  Copyright terms: Public domain W3C validator