Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdin Unicode version

Theorem mapdin 31131
Description: Subspace intersection is preserved by the map defined by df-mapd 31094. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdin.h  |-  H  =  ( LHyp `  K
)
mapdin.m  |-  M  =  ( (mapd `  K
) `  W )
mapdin.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdin.s  |-  S  =  ( LSubSp `  U )
mapdin.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdin.x  |-  ( ph  ->  X  e.  S )
mapdin.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mapdin  |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `
 X )  i^i  ( M `  Y
) ) )

Proof of Theorem mapdin
StepHypRef Expression
1 inss1 3390 . . . 4  |-  ( X  i^i  Y )  C_  X
2 mapdin.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 mapdin.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdin.s . . . . 5  |-  S  =  ( LSubSp `  U )
5 mapdin.m . . . . 5  |-  M  =  ( (mapd `  K
) `  W )
6 mapdin.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
72, 3, 6dvhlmod 30579 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
8 mapdin.x . . . . . 6  |-  ( ph  ->  X  e.  S )
9 mapdin.y . . . . . 6  |-  ( ph  ->  Y  e.  S )
104lssincl 15718 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  i^i  Y )  e.  S )
117, 8, 9, 10syl3anc 1182 . . . . 5  |-  ( ph  ->  ( X  i^i  Y
)  e.  S )
122, 3, 4, 5, 6, 11, 8mapdord 31107 . . . 4  |-  ( ph  ->  ( ( M `  ( X  i^i  Y ) )  C_  ( M `  X )  <->  ( X  i^i  Y )  C_  X
) )
131, 12mpbiri 224 . . 3  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( M `  X ) )
14 inss2 3391 . . . 4  |-  ( X  i^i  Y )  C_  Y
152, 3, 4, 5, 6, 11, 9mapdord 31107 . . . 4  |-  ( ph  ->  ( ( M `  ( X  i^i  Y ) )  C_  ( M `  Y )  <->  ( X  i^i  Y )  C_  Y
) )
1614, 15mpbiri 224 . . 3  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( M `  Y ) )
1713, 16ssind 3394 . 2  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( ( M `
 X )  i^i  ( M `  Y
) ) )
18 eqid 2284 . . . . 5  |-  ( (LCDual `  K ) `  W
)  =  ( (LCDual `  K ) `  W
)
19 eqid 2284 . . . . . . 7  |-  ( LSubSp `  ( (LCDual `  K
) `  W )
)  =  ( LSubSp `  ( (LCDual `  K
) `  W )
)
202, 5, 3, 4, 18, 19, 6, 8mapdcl2 31125 . . . . . 6  |-  ( ph  ->  ( M `  X
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
212, 5, 18, 19, 6mapdrn2 31120 . . . . . 6  |-  ( ph  ->  ran  M  =  (
LSubSp `  ( (LCDual `  K ) `  W
) ) )
2220, 21eleqtrrd 2361 . . . . 5  |-  ( ph  ->  ( M `  X
)  e.  ran  M
)
232, 5, 3, 4, 18, 19, 6, 9mapdcl2 31125 . . . . . 6  |-  ( ph  ->  ( M `  Y
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
2423, 21eleqtrrd 2361 . . . . 5  |-  ( ph  ->  ( M `  Y
)  e.  ran  M
)
252, 5, 3, 18, 6, 22, 24mapdincl 31130 . . . 4  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ran  M
)
262, 5, 6, 25mapdcnvid2 31126 . . 3  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
27 inss1 3390 . . . . . . . 8  |-  ( ( M `  X )  i^i  ( M `  Y ) )  C_  ( M `  X )
2827a1i 10 . . . . . . 7  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  C_  ( M `  X ) )
2926, 28eqsstrd 3213 . . . . . 6  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  X ) )
302, 18, 6lcdlmod 31061 . . . . . . . . . 10  |-  ( ph  ->  ( (LCDual `  K
) `  W )  e.  LMod )
3119lssincl 15718 . . . . . . . . . 10  |-  ( ( ( (LCDual `  K
) `  W )  e.  LMod  /\  ( M `  X )  e.  (
LSubSp `  ( (LCDual `  K ) `  W
) )  /\  ( M `  Y )  e.  ( LSubSp `  ( (LCDual `  K ) `  W
) ) )  -> 
( ( M `  X )  i^i  ( M `  Y )
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
3230, 20, 23, 31syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
3332, 21eleqtrrd 2361 . . . . . . . 8  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ran  M
)
342, 5, 3, 4, 6, 33mapdcnvcl 31121 . . . . . . 7  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  e.  S
)
352, 3, 4, 5, 6, 34, 8mapdord 31107 . . . . . 6  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  X )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  X ) )
3629, 35mpbid 201 . . . . 5  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  X
)
372, 5, 6, 33mapdcnvid2 31126 . . . . . . 7  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
38 inss2 3391 . . . . . . . 8  |-  ( ( M `  X )  i^i  ( M `  Y ) )  C_  ( M `  Y )
3938a1i 10 . . . . . . 7  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  C_  ( M `  Y ) )
4037, 39eqsstrd 3213 . . . . . 6  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  Y ) )
412, 3, 4, 5, 6, 34, 9mapdord 31107 . . . . . 6  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  Y )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  Y ) )
4240, 41mpbid 201 . . . . 5  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  Y
)
4336, 42ssind 3394 . . . 4  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  ( X  i^i  Y ) )
442, 3, 4, 5, 6, 34, 11mapdord 31107 . . . 4  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  ( X  i^i  Y
) )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  ( X  i^i  Y ) ) )
4543, 44mpbird 223 . . 3  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  ( X  i^i  Y
) ) )
4626, 45eqsstr3d 3214 . 2  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  C_  ( M `  ( X  i^i  Y
) ) )
4717, 46eqssd 3197 1  |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `
 X )  i^i  ( M `  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685    i^i cin 3152    C_ wss 3153   `'ccnv 4687   ran crn 4689   ` cfv 5221   LModclmod 15623   LSubSpclss 15685   HLchlt 28819   LHypclh 29452   DVecHcdvh 30547  LCDualclcd 31055  mapdcmpd 31093
This theorem is referenced by:  mapdheq4lem  31200  mapdh6lem1N  31202  mapdh6lem2N  31203  hdmap1l6lem1  31277  hdmap1l6lem2  31278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-undef 6292  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10779  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-sca 13220  df-vsca 13221  df-0g 13400  df-mre 13484  df-mrc 13485  df-acs 13487  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-mnd 14363  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-subg 14614  df-cntz 14789  df-oppg 14815  df-lsm 14943  df-cmn 15087  df-abl 15088  df-mgp 15322  df-rng 15336  df-ur 15338  df-oppr 15401  df-dvdsr 15419  df-unit 15420  df-invr 15450  df-dvr 15461  df-drng 15510  df-lmod 15625  df-lss 15686  df-lsp 15725  df-lvec 15852  df-lsatoms 28445  df-lshyp 28446  df-lcv 28488  df-lfl 28527  df-lkr 28555  df-ldual 28593  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-llines 28966  df-lplanes 28967  df-lvols 28968  df-lines 28969  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456  df-laut 29457  df-ldil 29572  df-ltrn 29573  df-trl 29627  df-tgrp 30211  df-tendo 30223  df-edring 30225  df-dveca 30471  df-disoa 30498  df-dvech 30548  df-dib 30608  df-dic 30642  df-dih 30698  df-doch 30817  df-djh 30864  df-lcdual 31056  df-mapd 31094
  Copyright terms: Public domain W3C validator