MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom2 Unicode version

Theorem mapdom2 6917
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
mapdom2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )

Proof of Theorem mapdom2
StepHypRef Expression
1 simpr 449 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  C  =  (/) )
21oveq1d 5725 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  ( (/)  ^m  A ) )
3 simplr 734 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  ( A  =  (/)  /\  C  =  (/) ) )
4 idd 23 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  A  =  (/) ) )
54, 1jctird 530 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  ( A  =  (/)  /\  C  =  (/) ) ) )
63, 5mtod 170 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  A  =  (/) )
7 df-ne 2414 . . . . . . . . 9  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
86, 7sylibr 205 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  A  =/=  (/) )
9 map0b 6692 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
108, 9syl 17 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( (/) 
^m  A )  =  (/) )
112, 10eqtrd 2285 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  (/) )
12 ovex 5735 . . . . . . 7  |-  ( C  ^m  B )  e. 
_V
13120dom 6876 . . . . . 6  |-  (/)  ~<_  ( C  ^m  B )
1411, 13syl6eqbr 3957 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
15 simpll 733 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  A  ~<_  B )
16 reldom 6755 . . . . . . . . . . 11  |-  Rel  ~<_
1716brrelex2i 4637 . . . . . . . . . 10  |-  ( A  ~<_  B  ->  B  e.  _V )
1817ad2antrr 709 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  B  e.  _V )
19 domeng 6762 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
2018, 19syl 17 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
2115, 20mpbid 203 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  E. x ( A  ~~  x  /\  x  C_  B
) )
22 enrefg 6779 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  C  ~~  C )
2322ad2antlr 710 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  ~~  C
)
24 simprrl 743 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  A  ~~  x
)
25 mapen 6910 . . . . . . . . . . 11  |-  ( ( C  ~~  C  /\  A  ~~  x )  -> 
( C  ^m  A
)  ~~  ( C  ^m  x ) )
2623, 24, 25syl2anc 645 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~~  ( C  ^m  x ) )
27 ovex 5735 . . . . . . . . . . . . 13  |-  ( C  ^m  x )  e. 
_V
2827a1i 12 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  e.  _V )
29 ovex 5735 . . . . . . . . . . . . 13  |-  ( C  ^m  ( B  \  x ) )  e. 
_V
3029a1i 12 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  e.  _V )
31 simprl 735 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  =/=  (/) )
32 simplr 734 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  e.  _V )
3317ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  B  e.  _V )
34 difexg 4058 . . . . . . . . . . . . . . 15  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( B  \  x )  e.  _V )
36 map0g 6693 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  <->  ( C  =  (/)  /\  ( B  \  x )  =/=  (/) ) ) )
37 simpl 445 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  (/)  /\  ( B  \  x )  =/=  (/) )  ->  C  =  (/) )
3836, 37syl6bi 221 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  ->  C  =  (/) ) )
3938necon3d 2450 . . . . . . . . . . . . . 14  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x ) )  =/=  (/) ) )
4032, 35, 39syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) ) )
4131, 40mpd 16 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) )
42 xpdom3 6845 . . . . . . . . . . . 12  |-  ( ( ( C  ^m  x
)  e.  _V  /\  ( C  ^m  ( B  \  x ) )  e.  _V  /\  ( C  ^m  ( B  \  x ) )  =/=  (/) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x
)  X.  ( C  ^m  ( B  \  x ) ) ) )
4328, 30, 41, 42syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
44 vex 2730 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4544a1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  e.  _V )
46 disjdif 3432 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( B  \  x ) )  =  (/)
4746a1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  i^i  ( B  \  x
) )  =  (/) )
48 mapunen 6915 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  _V  /\  ( B  \  x
)  e.  _V  /\  C  e.  _V )  /\  ( x  i^i  ( B  \  x ) )  =  (/) )  ->  ( C  ^m  ( x  u.  ( B  \  x
) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) ) )
4945, 35, 32, 47, 48syl31anc 1190 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
50 ensym 6796 . . . . . . . . . . . . 13  |-  ( ( C  ^m  ( x  u.  ( B  \  x ) ) ) 
~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  ( x  u.  ( B  \  x
) ) ) )
5149, 50syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  ( x  u.  ( B  \  x
) ) ) )
52 simprrr 744 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  C_  B
)
53 undif 3440 . . . . . . . . . . . . . 14  |-  ( x 
C_  B  <->  ( x  u.  ( B  \  x
) )  =  B )
5452, 53sylib 190 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  u.  ( B  \  x
) )  =  B )
5554oveq2d 5726 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  =  ( C  ^m  B ) )
5651, 55breqtrd 3944 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  B ) )
57 domentr 6805 . . . . . . . . . . 11  |-  ( ( ( C  ^m  x
)  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  /\  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) )  ~~  ( C  ^m  B ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
5843, 56, 57syl2anc 645 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
59 endomtr 6804 . . . . . . . . . 10  |-  ( ( ( C  ^m  A
)  ~~  ( C  ^m  x )  /\  ( C  ^m  x )  ~<_  ( C  ^m  B ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6026, 58, 59syl2anc 645 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6160expr 601 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( ( A  ~~  x  /\  x  C_  B
)  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) ) )
6261exlimdv 1932 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( E. x ( A  ~~  x  /\  x  C_  B )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
6321, 62mpd 16 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
6463adantlr 698 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =/=  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6514, 64pm2.61dane 2490 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6665an32s 782 . . 3  |-  ( ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  e.  _V )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6766ex 425 . 2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  e.  _V  ->  ( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
68 reldmmap 6667 . . . 4  |-  Rel  dom  ^m
6968ovprc1 5738 . . 3  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  =  (/) )
7069, 13syl6eqbr 3957 . 2  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  ~<_  ( C  ^m  B
) )
7167, 70pm2.61d1 153 1  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727    \ cdif 3075    u. cun 3076    i^i cin 3077    C_ wss 3078   (/)c0 3362   class class class wbr 3920    X. cxp 4578  (class class class)co 5710    ^m cmap 6658    ~~ cen 6746    ~<_ cdom 6747
This theorem is referenced by:  mapdom3  6918  cfpwsdom  8086  hauspwdom  17059
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-er 6546  df-map 6660  df-en 6750  df-dom 6751
  Copyright terms: Public domain W3C validator