Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpg Unicode version

Theorem mapdpg 31146
Description: Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in [Baer] p. 44. Our notation corresponds to Baer's as follows:  M for *,  N `  { } for F(),  J `  { } for G(),  X for x,  G for x',  Y for y,  h for y'. TODO: Rename variables per mapdhval 31164. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h  |-  H  =  ( LHyp `  K
)
mapdpg.m  |-  M  =  ( (mapd `  K
) `  W )
mapdpg.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdpg.v  |-  V  =  ( Base `  U
)
mapdpg.s  |-  .-  =  ( -g `  U )
mapdpg.z  |-  .0.  =  ( 0g `  U )
mapdpg.n  |-  N  =  ( LSpan `  U )
mapdpg.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdpg.f  |-  F  =  ( Base `  C
)
mapdpg.r  |-  R  =  ( -g `  C
)
mapdpg.j  |-  J  =  ( LSpan `  C )
mapdpg.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdpg.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdpg.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdpg.g  |-  ( ph  ->  G  e.  F )
mapdpg.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
mapdpg.e  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
Assertion
Ref Expression
mapdpg  |-  ( ph  ->  E! h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) )
Distinct variable groups:    C, h    h, F    h, G    h, J    h, M    h, N    R, h    .- , h    U, h    h, X    h, Y    ph, h
Allowed substitution hints:    H( h)    K( h)    V( h)    W( h)    .0. (
h)

Proof of Theorem mapdpg
StepHypRef Expression
1 mapdpg.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdpg.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
3 mapdpg.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdpg.v . . 3  |-  V  =  ( Base `  U
)
5 mapdpg.s . . 3  |-  .-  =  ( -g `  U )
6 mapdpg.z . . 3  |-  .0.  =  ( 0g `  U )
7 mapdpg.n . . 3  |-  N  =  ( LSpan `  U )
8 mapdpg.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
9 mapdpg.f . . 3  |-  F  =  ( Base `  C
)
10 mapdpg.r . . 3  |-  R  =  ( -g `  C
)
11 mapdpg.j . . 3  |-  J  =  ( LSpan `  C )
12 mapdpg.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 mapdpg.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
14 mapdpg.y . . 3  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
15 mapdpg.g . . 3  |-  ( ph  ->  G  e.  F )
16 mapdpg.ne . . 3  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
17 mapdpg.e . . 3  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17mapdpglem24 31144 . 2  |-  ( ph  ->  E. h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17mapdpglem32 31145 . . . 4  |-  ( (
ph  /\  ( h  e.  F  /\  i  e.  F )  /\  (
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )  ->  h  =  i )
20193exp 1155 . . 3  |-  ( ph  ->  ( ( h  e.  F  /\  i  e.  F )  ->  (
( ( ( M `
 ( N `  { Y } ) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R h ) } ) )  /\  ( ( M `
 ( N `  { Y } ) )  =  ( J `  { i } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R i ) } ) ) )  ->  h  =  i ) ) )
2120ralrimivv 2609 . 2  |-  ( ph  ->  A. h  e.  F  A. i  e.  F  ( ( ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( G R h ) } ) )  /\  (
( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) )  ->  h  =  i ) )
22 sneq 3625 . . . . . 6  |-  ( h  =  i  ->  { h }  =  { i } )
2322fveq2d 5462 . . . . 5  |-  ( h  =  i  ->  ( J `  { h } )  =  ( J `  { i } ) )
2423eqeq2d 2269 . . . 4  |-  ( h  =  i  ->  (
( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  <->  ( M `  ( N `  { Y } ) )  =  ( J `  {
i } ) ) )
25 oveq2 5800 . . . . . . 7  |-  ( h  =  i  ->  ( G R h )  =  ( G R i ) )
2625sneqd 3627 . . . . . 6  |-  ( h  =  i  ->  { ( G R h ) }  =  { ( G R i ) } )
2726fveq2d 5462 . . . . 5  |-  ( h  =  i  ->  ( J `  { ( G R h ) } )  =  ( J `
 { ( G R i ) } ) )
2827eqeq2d 2269 . . . 4  |-  ( h  =  i  ->  (
( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  { ( G R h ) } )  <->  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( J `  { ( G R i ) } ) ) )
2924, 28anbi12d 694 . . 3  |-  ( h  =  i  ->  (
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( J `
 { i } )  /\  ( M `
 ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( G R i ) } ) ) ) )
3029reu4 2934 . 2  |-  ( E! h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  <->  ( E. h  e.  F  (
( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  /\  A. h  e.  F  A. i  e.  F  (
( ( ( M `
 ( N `  { Y } ) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R h ) } ) )  /\  ( ( M `
 ( N `  { Y } ) )  =  ( J `  { i } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R i ) } ) ) )  ->  h  =  i ) ) )
3118, 21, 30sylanbrc 648 1  |-  ( ph  ->  E! h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   E!wreu 2520    \ cdif 3124   {csn 3614   ` cfv 4673  (class class class)co 5792   Basecbs 13111   0gc0g 13363   -gcsg 14328   LSpanclspn 15691   HLchlt 28790   LHypclh 29423   DVecHcdvh 30518  LCDualclcd 31026  mapdcmpd 31064
This theorem is referenced by:  mapdhcl  31167  mapdheq  31168  hdmap1eq  31242
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-tpos 6168  df-iota 6225  df-undef 6264  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-n0 9934  df-z 9993  df-uz 10199  df-fz 10750  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-sca 13187  df-vsca 13188  df-0g 13367  df-mre 13451  df-mrc 13452  df-acs 13454  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-mnd 14330  df-submnd 14379  df-grp 14452  df-minusg 14453  df-sbg 14454  df-subg 14581  df-cntz 14756  df-oppg 14782  df-lsm 14910  df-cmn 15054  df-abl 15055  df-mgp 15289  df-ring 15303  df-ur 15305  df-oppr 15368  df-dvdsr 15386  df-unit 15387  df-invr 15417  df-dvr 15428  df-drng 15477  df-lmod 15592  df-lss 15653  df-lsp 15692  df-lvec 15819  df-lsatoms 28416  df-lshyp 28417  df-lcv 28459  df-lfl 28498  df-lkr 28526  df-ldual 28564  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544  df-trl 29598  df-tgrp 30182  df-tendo 30194  df-edring 30196  df-dveca 30442  df-disoa 30469  df-dvech 30519  df-dib 30579  df-dic 30613  df-dih 30669  df-doch 30788  df-djh 30835  df-lcdual 31027  df-mapd 31065
  Copyright terms: Public domain W3C validator