Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpg Unicode version

Theorem mapdpg 31175
Description: Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in [Baer] p. 44. Our notation corresponds to Baer's as follows:  M for *,  N `  { } for F(),  J `  { } for G(),  X for x,  G for x',  Y for y,  h for y'. TODO: Rename variables per mapdhval 31193. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h  |-  H  =  ( LHyp `  K
)
mapdpg.m  |-  M  =  ( (mapd `  K
) `  W )
mapdpg.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdpg.v  |-  V  =  ( Base `  U
)
mapdpg.s  |-  .-  =  ( -g `  U )
mapdpg.z  |-  .0.  =  ( 0g `  U )
mapdpg.n  |-  N  =  ( LSpan `  U )
mapdpg.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdpg.f  |-  F  =  ( Base `  C
)
mapdpg.r  |-  R  =  ( -g `  C
)
mapdpg.j  |-  J  =  ( LSpan `  C )
mapdpg.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdpg.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdpg.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdpg.g  |-  ( ph  ->  G  e.  F )
mapdpg.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
mapdpg.e  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
Assertion
Ref Expression
mapdpg  |-  ( ph  ->  E! h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) )
Distinct variable groups:    C, h    h, F    h, G    h, J    h, M    h, N    R, h    .- , h    U, h    h, X    h, Y    ph, h
Allowed substitution hints:    H( h)    K( h)    V( h)    W( h)    .0. (
h)

Proof of Theorem mapdpg
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdpg.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
3 mapdpg.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdpg.v . . 3  |-  V  =  ( Base `  U
)
5 mapdpg.s . . 3  |-  .-  =  ( -g `  U )
6 mapdpg.z . . 3  |-  .0.  =  ( 0g `  U )
7 mapdpg.n . . 3  |-  N  =  ( LSpan `  U )
8 mapdpg.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
9 mapdpg.f . . 3  |-  F  =  ( Base `  C
)
10 mapdpg.r . . 3  |-  R  =  ( -g `  C
)
11 mapdpg.j . . 3  |-  J  =  ( LSpan `  C )
12 mapdpg.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 mapdpg.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
14 mapdpg.y . . 3  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
15 mapdpg.g . . 3  |-  ( ph  ->  G  e.  F )
16 mapdpg.ne . . 3  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
17 mapdpg.e . . 3  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17mapdpglem24 31173 . 2  |-  ( ph  ->  E. h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17mapdpglem32 31174 . . . 4  |-  ( (
ph  /\  ( h  e.  F  /\  i  e.  F )  /\  (
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )  ->  h  =  i )
20193exp 1150 . . 3  |-  ( ph  ->  ( ( h  e.  F  /\  i  e.  F )  ->  (
( ( ( M `
 ( N `  { Y } ) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R h ) } ) )  /\  ( ( M `
 ( N `  { Y } ) )  =  ( J `  { i } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R i ) } ) ) )  ->  h  =  i ) ) )
2120ralrimivv 2635 . 2  |-  ( ph  ->  A. h  e.  F  A. i  e.  F  ( ( ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( G R h ) } ) )  /\  (
( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) )  ->  h  =  i ) )
22 sneq 3652 . . . . . 6  |-  ( h  =  i  ->  { h }  =  { i } )
2322fveq2d 5490 . . . . 5  |-  ( h  =  i  ->  ( J `  { h } )  =  ( J `  { i } ) )
2423eqeq2d 2295 . . . 4  |-  ( h  =  i  ->  (
( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  <->  ( M `  ( N `  { Y } ) )  =  ( J `  {
i } ) ) )
25 oveq2 5828 . . . . . . 7  |-  ( h  =  i  ->  ( G R h )  =  ( G R i ) )
2625sneqd 3654 . . . . . 6  |-  ( h  =  i  ->  { ( G R h ) }  =  { ( G R i ) } )
2726fveq2d 5490 . . . . 5  |-  ( h  =  i  ->  ( J `  { ( G R h ) } )  =  ( J `
 { ( G R i ) } ) )
2827eqeq2d 2295 . . . 4  |-  ( h  =  i  ->  (
( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  { ( G R h ) } )  <->  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( J `  { ( G R i ) } ) ) )
2924, 28anbi12d 691 . . 3  |-  ( h  =  i  ->  (
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( J `
 { i } )  /\  ( M `
 ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( G R i ) } ) ) ) )
3029reu4 2960 . 2  |-  ( E! h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  <->  ( E. h  e.  F  (
( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) )  /\  A. h  e.  F  A. i  e.  F  (
( ( ( M `
 ( N `  { Y } ) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R h ) } ) )  /\  ( ( M `
 ( N `  { Y } ) )  =  ( J `  { i } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  {
( G R i ) } ) ) )  ->  h  =  i ) ) )
3118, 21, 30sylanbrc 645 1  |-  ( ph  ->  E! h  e.  F  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   E!wreu 2546    \ cdif 3150   {csn 3641   ` cfv 5221  (class class class)co 5820   Basecbs 13144   0gc0g 13396   -gcsg 14361   LSpanclspn 15724   HLchlt 28819   LHypclh 29452   DVecHcdvh 30547  LCDualclcd 31055  mapdcmpd 31093
This theorem is referenced by:  mapdhcl  31196  mapdheq  31197  hdmap1eq  31271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-undef 6292  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10779  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-sca 13220  df-vsca 13221  df-0g 13400  df-mre 13484  df-mrc 13485  df-acs 13487  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-mnd 14363  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-subg 14614  df-cntz 14789  df-oppg 14815  df-lsm 14943  df-cmn 15087  df-abl 15088  df-mgp 15322  df-rng 15336  df-ur 15338  df-oppr 15401  df-dvdsr 15419  df-unit 15420  df-invr 15450  df-dvr 15461  df-drng 15510  df-lmod 15625  df-lss 15686  df-lsp 15725  df-lvec 15852  df-lsatoms 28445  df-lshyp 28446  df-lcv 28488  df-lfl 28527  df-lkr 28555  df-ldual 28593  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-llines 28966  df-lplanes 28967  df-lvols 28968  df-lines 28969  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456  df-laut 29457  df-ldil 29572  df-ltrn 29573  df-trl 29627  df-tgrp 30211  df-tendo 30223  df-edring 30225  df-dveca 30471  df-disoa 30498  df-dvech 30548  df-dib 30608  df-dic 30642  df-dih 30698  df-doch 30817  df-djh 30864  df-lcdual 31056  df-mapd 31094
  Copyright terms: Public domain W3C validator