MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Unicode version

Theorem mapex 6774
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
Assertion
Ref Expression
mapex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapex
StepHypRef Expression
1 fssxp 5366 . . . 4  |-  ( f : A --> B  -> 
f  C_  ( A  X.  B ) )
21ss2abi 3246 . . 3  |-  { f  |  f : A --> B }  C_  { f  |  f  C_  ( A  X.  B ) }
3 df-pw 3628 . . 3  |-  ~P ( A  X.  B )  =  { f  |  f 
C_  ( A  X.  B ) }
42, 3sseqtr4i 3212 . 2  |-  { f  |  f : A --> B }  C_  ~P ( A  X.  B )
5 xpexg 4799 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
6 pwexg 4193 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
75, 6syl 15 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( A  X.  B )  e.  _V )
8 ssexg 4161 . 2  |-  ( ( { f  |  f : A --> B }  C_ 
~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  { f  |  f : A --> B }  e.  _V )
94, 7, 8sylancr 644 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1685   {cab 2270   _Vcvv 2789    C_ wss 3153   ~Pcpw 3626    X. cxp 4686   -->wf 5217
This theorem is referenced by:  fnmap  6775  mapvalg  6778  isghm  14679  cnfex  27110
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699  df-fun 5223  df-fn 5224  df-f 5225
  Copyright terms: Public domain W3C validator