MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsn Unicode version

Theorem mapsn 6777
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1  |-  A  e. 
_V
map0.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsn  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Distinct variable groups:    y, f, A    B, f, y

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4  |-  A  e. 
_V
2 snex 4188 . . . 4  |-  { B }  e.  _V
31, 2elmap 6764 . . 3  |-  ( f  e.  ( A  ^m  { B } )  <->  f : { B } --> A )
4 ffn 5327 . . . . . . . 8  |-  ( f : { B } --> A  ->  f  Fn  { B } )
5 map0.2 . . . . . . . . 9  |-  B  e. 
_V
65snid 3641 . . . . . . . 8  |-  B  e. 
{ B }
7 fneu 5286 . . . . . . . 8  |-  ( ( f  Fn  { B }  /\  B  e.  { B } )  ->  E! y  B f y )
84, 6, 7sylancl 646 . . . . . . 7  |-  ( f : { B } --> A  ->  E! y  B f y )
9 euabsn 3673 . . . . . . . 8  |-  ( E! y  B f y  <->  E. y { y  |  B f y }  =  { y } )
10 frel 5330 . . . . . . . . . . . 12  |-  ( f : { B } --> A  ->  Rel  f )
11 relimasn 5024 . . . . . . . . . . . 12  |-  ( Rel  f  ->  ( f " { B } )  =  { y  |  B f y } )
1210, 11syl 17 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  ( f " { B } )  =  { y  |  B
f y } )
13 imadmrn 5012 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
14 fdm 5331 . . . . . . . . . . . . 13  |-  ( f : { B } --> A  ->  dom  f  =  { B } )
1514imaeq2d 5000 . . . . . . . . . . . 12  |-  ( f : { B } --> A  ->  ( f " dom  f )  =  ( f " { B } ) )
1613, 15syl5reqr 2305 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  ( f " { B } )  =  ran  f )
1712, 16eqtr3d 2292 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  { y  |  B f y }  =  ran  f )
1817eqeq1d 2266 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( { y  |  B f y }  =  { y }  <->  ran  f  =  {
y } ) )
1918exbidv 2006 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( E. y { y  |  B
f y }  =  { y }  <->  E. y ran  f  =  {
y } ) )
209, 19syl5bb 250 . . . . . . 7  |-  ( f : { B } --> A  ->  ( E! y  B f y  <->  E. y ran  f  =  {
y } ) )
218, 20mpbid 203 . . . . . 6  |-  ( f : { B } --> A  ->  E. y ran  f  =  { y } )
22 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
2322snid 3641 . . . . . . . . . 10  |-  y  e. 
{ y }
24 eleq2 2319 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( y  e.  ran  f  <->  y  e.  { y } ) )
2523, 24mpbiri 226 . . . . . . . . 9  |-  ( ran  f  =  { y }  ->  y  e.  ran  f )
26 frn 5333 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  ran  f  C_  A )
2726sseld 3154 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( y  e. 
ran  f  ->  y  e.  A ) )
2825, 27syl5 30 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  y  e.  A ) )
29 dffn4 5395 . . . . . . . . . . . 12  |-  ( f  Fn  { B }  <->  f : { B } -onto-> ran  f )
304, 29sylib 190 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  f : { B } -onto-> ran  f )
31 fof 5389 . . . . . . . . . . 11  |-  ( f : { B } -onto-> ran  f  ->  f : { B } --> ran  f
)
3230, 31syl 17 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  f : { B } --> ran  f )
33 feq3 5315 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( f : { B } --> ran  f  <->  f : { B } --> { y } ) )
3432, 33syl5ibcom 213 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f : { B } --> { y } ) )
355, 22fsn 5630 . . . . . . . . 9  |-  ( f : { B } --> { y }  <->  f  =  { <. B ,  y
>. } )
3634, 35syl6ib 219 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f  =  { <. B , 
y >. } ) )
3728, 36jcad 521 . . . . . . 7  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  ( y  e.  A  /\  f  =  { <. B , 
y >. } ) ) )
3837eximdv 2019 . . . . . 6  |-  ( f : { B } --> A  ->  ( E. y ran  f  =  {
y }  ->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) ) )
3921, 38mpd 16 . . . . 5  |-  ( f : { B } --> A  ->  E. y ( y  e.  A  /\  f  =  { <. B ,  y
>. } ) )
40 df-rex 2524 . . . . 5  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  <->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) )
4139, 40sylibr 205 . . . 4  |-  ( f : { B } --> A  ->  E. y  e.  A  f  =  { <. B , 
y >. } )
425, 22f1osn 5451 . . . . . . . . 9  |-  { <. B ,  y >. } : { B } -1-1-onto-> { y }
43 f1oeq1 5401 . . . . . . . . 9  |-  ( f  =  { <. B , 
y >. }  ->  (
f : { B }
-1-1-onto-> { y }  <->  { <. B , 
y >. } : { B } -1-1-onto-> { y } ) )
4442, 43mpbiri 226 . . . . . . . 8  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } -1-1-onto-> { y } )
45 f1of 5410 . . . . . . . 8  |-  ( f : { B } -1-1-onto-> {
y }  ->  f : { B } --> { y } )
4644, 45syl 17 . . . . . . 7  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } --> { y } )
47 snssi 3733 . . . . . . 7  |-  ( y  e.  A  ->  { y }  C_  A )
48 fss 5335 . . . . . . 7  |-  ( ( f : { B }
--> { y }  /\  { y }  C_  A
)  ->  f : { B } --> A )
4946, 47, 48syl2an 465 . . . . . 6  |-  ( ( f  =  { <. B ,  y >. }  /\  y  e.  A )  ->  f : { B }
--> A )
5049expcom 426 . . . . 5  |-  ( y  e.  A  ->  (
f  =  { <. B ,  y >. }  ->  f : { B } --> A ) )
5150rexlimiv 2636 . . . 4  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  ->  f : { B } --> A )
5241, 51impbii 182 . . 3  |-  ( f : { B } --> A 
<->  E. y  e.  A  f  =  { <. B , 
y >. } )
533, 52bitri 242 . 2  |-  ( f  e.  ( A  ^m  { B } )  <->  E. y  e.  A  f  =  { <. B ,  y
>. } )
5453abbi2i 2369 1  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   E!weu 2118   {cab 2244   E.wrex 2519   _Vcvv 2763    C_ wss 3127   {csn 3614   <.cop 3617   class class class wbr 3997   dom cdm 4661   ran crn 4662   "cima 4664   Rel wrel 4666    Fn wfn 4668   -->wf 4669   -onto->wfo 4671   -1-1-onto->wf1o 4672  (class class class)co 5792    ^m cmap 6740
This theorem is referenced by:  mapsnen  6906
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-map 6742
  Copyright terms: Public domain W3C validator