MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapss Unicode version

Theorem mapss 6696
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( A  ^m  C
)  C_  ( B  ^m  C ) )

Proof of Theorem mapss
StepHypRef Expression
1 elmapi 6678 . . . . . 6  |-  ( f  e.  ( A  ^m  C )  ->  f : C --> A )
21adantl 454 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  f : C
--> A )
3 simplr 734 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  A  C_  B
)
4 fss 5254 . . . . 5  |-  ( ( f : C --> A  /\  A  C_  B )  -> 
f : C --> B )
52, 3, 4syl2anc 645 . . . 4  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  f : C
--> B )
6 simpll 733 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  B  e.  V )
7 elmapex 6677 . . . . . . 7  |-  ( f  e.  ( A  ^m  C )  ->  ( A  e.  _V  /\  C  e.  _V ) )
87simprd 451 . . . . . 6  |-  ( f  e.  ( A  ^m  C )  ->  C  e.  _V )
98adantl 454 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  C  e.  _V )
10 elmapg 6671 . . . . 5  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( f  e.  ( B  ^m  C )  <-> 
f : C --> B ) )
116, 9, 10syl2anc 645 . . . 4  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  ( f  e.  ( B  ^m  C
)  <->  f : C --> B ) )
125, 11mpbird 225 . . 3  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  f  e.  ( B  ^m  C ) )
1312ex 425 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( f  e.  ( A  ^m  C )  ->  f  e.  ( B  ^m  C ) ) )
1413ssrdv 3106 1  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( A  ^m  C
)  C_  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   _Vcvv 2727    C_ wss 3078   -->wf 4588  (class class class)co 5710    ^m cmap 6658
This theorem is referenced by:  mapdom1  6911  ssfin3ds  7840  ingru  8317  resspsrbas  15991  resspsradd  15992  resspsrmul  15993  plyss  19413  negveudr  24835  subclrvd  24840  diophrw  26004  diophin  26018  diophun  26019  eq0rabdioph  26022  eqrabdioph  26023  rabdiophlem1  26048  diophren  26062
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-map 6660
  Copyright terms: Public domain W3C validator