MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapunen Unicode version

Theorem mapunen 7267
Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapunen  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( C  ^m  ( A  u.  B
) )  ~~  (
( C  ^m  A
)  X.  ( C  ^m  B ) ) )

Proof of Theorem mapunen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6097 . . 3  |-  ( C  ^m  ( A  u.  B ) )  e. 
_V
21a1i 11 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( C  ^m  ( A  u.  B
) )  e.  _V )
3 ovex 6097 . . . 4  |-  ( C  ^m  A )  e. 
_V
4 ovex 6097 . . . 4  |-  ( C  ^m  B )  e. 
_V
53, 4xpex 4981 . . 3  |-  ( ( C  ^m  A )  X.  ( C  ^m  B ) )  e. 
_V
65a1i 11 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  e.  _V )
7 elmapi 7029 . . . . 5  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  x : ( A  u.  B ) --> C )
8 ssun1 3502 . . . . 5  |-  A  C_  ( A  u.  B
)
9 fssres 5601 . . . . 5  |-  ( ( x : ( A  u.  B ) --> C  /\  A  C_  ( A  u.  B )
)  ->  ( x  |`  A ) : A --> C )
107, 8, 9sylancl 644 . . . 4  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
x  |`  A ) : A --> C )
11 ssun2 3503 . . . . 5  |-  B  C_  ( A  u.  B
)
12 fssres 5601 . . . . 5  |-  ( ( x : ( A  u.  B ) --> C  /\  B  C_  ( A  u.  B )
)  ->  ( x  |`  B ) : B --> C )
137, 11, 12sylancl 644 . . . 4  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
x  |`  B ) : B --> C )
1410, 13jca 519 . . 3  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
( x  |`  A ) : A --> C  /\  ( x  |`  B ) : B --> C ) )
15 opelxp 4899 . . . 4  |-  ( <.
( x  |`  A ) ,  ( x  |`  B ) >.  e.  ( ( C  ^m  A
)  X.  ( C  ^m  B ) )  <-> 
( ( x  |`  A )  e.  ( C  ^m  A )  /\  ( x  |`  B )  e.  ( C  ^m  B ) ) )
16 simpl3 962 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  C  e.  X
)
17 simpl1 960 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  A  e.  V
)
18 elmapg 7022 . . . . . 6  |-  ( ( C  e.  X  /\  A  e.  V )  ->  ( ( x  |`  A )  e.  ( C  ^m  A )  <-> 
( x  |`  A ) : A --> C ) )
1916, 17, 18syl2anc 643 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  |`  A )  e.  ( C  ^m  A )  <-> 
( x  |`  A ) : A --> C ) )
20 simpl2 961 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  B  e.  W
)
21 elmapg 7022 . . . . . 6  |-  ( ( C  e.  X  /\  B  e.  W )  ->  ( ( x  |`  B )  e.  ( C  ^m  B )  <-> 
( x  |`  B ) : B --> C ) )
2216, 20, 21syl2anc 643 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  |`  B )  e.  ( C  ^m  B )  <-> 
( x  |`  B ) : B --> C ) )
2319, 22anbi12d 692 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( ( x  |`  A )  e.  ( C  ^m  A
)  /\  ( x  |`  B )  e.  ( C  ^m  B ) )  <->  ( ( x  |`  A ) : A --> C  /\  ( x  |`  B ) : B --> C ) ) )
2415, 23syl5bb 249 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( <. (
x  |`  A ) ,  ( x  |`  B )
>.  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  <->  ( (
x  |`  A ) : A --> C  /\  (
x  |`  B ) : B --> C ) ) )
2514, 24syl5ibr 213 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( x  e.  ( C  ^m  ( A  u.  B )
)  ->  <. ( x  |`  A ) ,  ( x  |`  B ) >.  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )
26 xp1st 6367 . . . . . . 7  |-  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  ->  ( 1st `  y )  e.  ( C  ^m  A
) )
2726adantl 453 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 1st `  y )  e.  ( C  ^m  A ) )
28 elmapi 7029 . . . . . 6  |-  ( ( 1st `  y )  e.  ( C  ^m  A )  ->  ( 1st `  y ) : A --> C )
2927, 28syl 16 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 1st `  y ) : A --> C )
30 xp2nd 6368 . . . . . . 7  |-  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  ->  ( 2nd `  y )  e.  ( C  ^m  B
) )
3130adantl 453 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 2nd `  y )  e.  ( C  ^m  B ) )
32 elmapi 7029 . . . . . 6  |-  ( ( 2nd `  y )  e.  ( C  ^m  B )  ->  ( 2nd `  y ) : B --> C )
3331, 32syl 16 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 2nd `  y ) : B --> C )
34 simplr 732 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( A  i^i  B )  =  (/) )
35 fun2 5599 . . . . 5  |-  ( ( ( ( 1st `  y
) : A --> C  /\  ( 2nd `  y ) : B --> C )  /\  ( A  i^i  B )  =  (/) )  -> 
( ( 1st `  y
)  u.  ( 2nd `  y ) ) : ( A  u.  B
) --> C )
3629, 33, 34, 35syl21anc 1183 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( ( 1st `  y )  u.  ( 2nd `  y
) ) : ( A  u.  B ) --> C )
3736ex 424 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) )  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) ) : ( A  u.  B ) --> C ) )
38 unexg 4701 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
3917, 20, 38syl2anc 643 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e.  _V )
40 elmapg 7022 . . . 4  |-  ( ( C  e.  X  /\  ( A  u.  B
)  e.  _V )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y ) )  e.  ( C  ^m  ( A  u.  B
) )  <->  ( ( 1st `  y )  u.  ( 2nd `  y
) ) : ( A  u.  B ) --> C ) )
4116, 39, 40syl2anc 643 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  e.  ( C  ^m  ( A  u.  B ) )  <-> 
( ( 1st `  y
)  u.  ( 2nd `  y ) ) : ( A  u.  B
) --> C ) )
4237, 41sylibrd 226 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) )  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) )  e.  ( C  ^m  ( A  u.  B
) ) ) )
43 1st2nd2 6377 . . . . . . 7  |-  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
4443ad2antll 710 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
4529adantrl 697 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( 1st `  y
) : A --> C )
4633adantrl 697 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( 2nd `  y
) : B --> C )
47 res0 5141 . . . . . . . . . 10  |-  ( ( 1st `  y )  |`  (/) )  =  (/)
48 res0 5141 . . . . . . . . . 10  |-  ( ( 2nd `  y )  |`  (/) )  =  (/)
4947, 48eqtr4i 2458 . . . . . . . . 9  |-  ( ( 1st `  y )  |`  (/) )  =  ( ( 2nd `  y
)  |`  (/) )
50 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( A  i^i  B )  =  (/) )
5150reseq2d 5137 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( 1st `  y )  |`  ( A  i^i  B ) )  =  ( ( 1st `  y )  |`  (/) ) )
5250reseq2d 5137 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( 2nd `  y )  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y )  |`  (/) ) )
5349, 51, 523eqtr4a 2493 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( 1st `  y )  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y )  |`  ( A  i^i  B ) ) )
54 fresaunres1 5607 . . . . . . . 8  |-  ( ( ( 1st `  y
) : A --> C  /\  ( 2nd `  y ) : B --> C  /\  ( ( 1st `  y
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y
)  |`  ( A  i^i  B ) ) )  -> 
( ( ( 1st `  y )  u.  ( 2nd `  y ) )  |`  A )  =  ( 1st `  y ) )
5545, 46, 53, 54syl3anc 1184 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  A )  =  ( 1st `  y
) )
56 fresaunres2 5606 . . . . . . . 8  |-  ( ( ( 1st `  y
) : A --> C  /\  ( 2nd `  y ) : B --> C  /\  ( ( 1st `  y
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y
)  |`  ( A  i^i  B ) ) )  -> 
( ( ( 1st `  y )  u.  ( 2nd `  y ) )  |`  B )  =  ( 2nd `  y ) )
5745, 46, 53, 56syl3anc 1184 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  B )  =  ( 2nd `  y
) )
5855, 57opeq12d 3984 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  <. ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  A ) ,  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  B )
>.  =  <. ( 1st `  y ) ,  ( 2nd `  y )
>. )
5944, 58eqtr4d 2470 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  y  =  <. ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  A ) ,  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  B ) >. )
60 reseq1 5131 . . . . . . 7  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  ( x  |`  A )  =  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  A ) )
61 reseq1 5131 . . . . . . 7  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  ( x  |`  B )  =  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  B ) )
6260, 61opeq12d 3984 . . . . . 6  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  <. ( x  |`  A ) ,  ( x  |`  B ) >.  =  <. ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  A ) ,  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  B )
>. )
6362eqeq2d 2446 . . . . 5  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  ( y  = 
<. ( x  |`  A ) ,  ( x  |`  B ) >.  <->  y  =  <. ( ( ( 1st `  y )  u.  ( 2nd `  y ) )  |`  A ) ,  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  B ) >. )
)
6459, 63syl5ibrcom 214 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( x  =  ( ( 1st `  y
)  u.  ( 2nd `  y ) )  -> 
y  =  <. (
x  |`  A ) ,  ( x  |`  B )
>. ) )
65 ffn 5582 . . . . . . . 8  |-  ( x : ( A  u.  B ) --> C  ->  x  Fn  ( A  u.  B ) )
66 fnresdm 5545 . . . . . . . 8  |-  ( x  Fn  ( A  u.  B )  ->  (
x  |`  ( A  u.  B ) )  =  x )
677, 65, 663syl 19 . . . . . . 7  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
x  |`  ( A  u.  B ) )  =  x )
6867ad2antrl 709 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( x  |`  ( A  u.  B
) )  =  x )
6968eqcomd 2440 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  x  =  ( x  |`  ( A  u.  B ) ) )
70 vex 2951 . . . . . . . . . 10  |-  x  e. 
_V
7170resex 5177 . . . . . . . . 9  |-  ( x  |`  A )  e.  _V
7270resex 5177 . . . . . . . . 9  |-  ( x  |`  B )  e.  _V
7371, 72op1std 6348 . . . . . . . 8  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( 1st `  y
)  =  ( x  |`  A ) )
7471, 72op2ndd 6349 . . . . . . . 8  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( 2nd `  y
)  =  ( x  |`  B ) )
7573, 74uneq12d 3494 . . . . . . 7  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) )  =  ( ( x  |`  A )  u.  (
x  |`  B ) ) )
76 resundi 5151 . . . . . . 7  |-  ( x  |`  ( A  u.  B
) )  =  ( ( x  |`  A )  u.  ( x  |`  B ) )
7775, 76syl6eqr 2485 . . . . . 6  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) )  =  ( x  |`  ( A  u.  B
) ) )
7877eqeq2d 2446 . . . . 5  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( x  =  ( ( 1st `  y
)  u.  ( 2nd `  y ) )  <->  x  =  ( x  |`  ( A  u.  B ) ) ) )
7969, 78syl5ibrcom 214 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( y  = 
<. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) ) ) )
8064, 79impbid 184 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( x  =  ( ( 1st `  y
)  u.  ( 2nd `  y ) )  <->  y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >. )
)
8180ex 424 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  e.  ( C  ^m  ( A  u.  B
) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  <-> 
y  =  <. (
x  |`  A ) ,  ( x  |`  B )
>. ) ) )
822, 6, 25, 42, 81en3d 7135 1  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( C  ^m  ( A  u.  B
) )  ~~  (
( C  ^m  A
)  X.  ( C  ^m  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   <.cop 3809   class class class wbr 4204    X. cxp 4867    |` cres 4871    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072   1stc1st 6338   2ndc2nd 6339    ^m cmap 7009    ~~ cen 7097
This theorem is referenced by:  map2xp  7268  mapdom2  7269  mapcdaen  8053  ackbij1lem5  8093  hashmap  11686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-map 7011  df-en 7101
  Copyright terms: Public domain W3C validator