MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapvalg Unicode version

Theorem mapvalg 6782
Description: The value of set exponentiation.  ( A  ^m  B ) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 6778 . . 3  |-  ( ( B  e.  D  /\  A  e.  C )  ->  { f  |  f : B --> A }  e.  _V )
21ancoms 439 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : B --> A }  e.  _V )
3 elex 2796 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
4 elex 2796 . . 3  |-  ( B  e.  D  ->  B  e.  _V )
5 feq3 5377 . . . . . 6  |-  ( x  =  A  ->  (
f : y --> x  <-> 
f : y --> A ) )
65abbidv 2397 . . . . 5  |-  ( x  =  A  ->  { f  |  f : y --> x }  =  {
f  |  f : y --> A } )
7 feq2 5376 . . . . . 6  |-  ( y  =  B  ->  (
f : y --> A  <-> 
f : B --> A ) )
87abbidv 2397 . . . . 5  |-  ( y  =  B  ->  { f  |  f : y --> A }  =  {
f  |  f : B --> A } )
9 df-map 6774 . . . . 5  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
106, 8, 9ovmpt2g 5982 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  {
f  |  f : B --> A }  e.  _V )  ->  ( A  ^m  B )  =  { f  |  f : B --> A }
)
11103expia 1153 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { f  |  f : B --> A }  e.  _V  ->  ( A  ^m  B )  =  {
f  |  f : B --> A } ) )
123, 4, 11syl2an 463 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { f  |  f : B --> A }  e.  _V  ->  ( A  ^m  B )  =  {
f  |  f : B --> A } ) )
132, 12mpd 14 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788   -->wf 5251  (class class class)co 5858    ^m cmap 6772
This theorem is referenced by:  mapval  6784  elmapg  6785  ixpconstg  6825  hashf1lem2  11394  birthdaylem1  20246  birthdaylem2  20247  mapex2  25140  cnfex  27699
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774
  Copyright terms: Public domain W3C validator