MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapxpen Unicode version

Theorem mapxpen 7209
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
mapxpen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  B )  ^m  C
)  ~~  ( A  ^m  ( B  X.  C
) ) )

Proof of Theorem mapxpen
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6045 . . 3  |-  ( ( A  ^m  B )  ^m  C )  e. 
_V
21a1i 11 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  B )  ^m  C
)  e.  _V )
3 ovex 6045 . . 3  |-  ( A  ^m  ( B  X.  C ) )  e. 
_V
43a1i 11 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  X.  C ) )  e.  _V )
5 elmapi 6974 . . . . . . . . . 10  |-  ( f  e.  ( ( A  ^m  B )  ^m  C )  ->  f : C --> ( A  ^m  B ) )
65ffvelrnda 5809 . . . . . . . . 9  |-  ( ( f  e.  ( ( A  ^m  B )  ^m  C )  /\  y  e.  C )  ->  ( f `  y
)  e.  ( A  ^m  B ) )
7 elmapi 6974 . . . . . . . . 9  |-  ( ( f `  y )  e.  ( A  ^m  B )  ->  (
f `  y ) : B --> A )
86, 7syl 16 . . . . . . . 8  |-  ( ( f  e.  ( ( A  ^m  B )  ^m  C )  /\  y  e.  C )  ->  ( f `  y
) : B --> A )
98ffvelrnda 5809 . . . . . . 7  |-  ( ( ( f  e.  ( ( A  ^m  B
)  ^m  C )  /\  y  e.  C
)  /\  x  e.  B )  ->  (
( f `  y
) `  x )  e.  A )
109an32s 780 . . . . . 6  |-  ( ( ( f  e.  ( ( A  ^m  B
)  ^m  C )  /\  x  e.  B
)  /\  y  e.  C )  ->  (
( f `  y
) `  x )  e.  A )
1110ralrimiva 2732 . . . . 5  |-  ( ( f  e.  ( ( A  ^m  B )  ^m  C )  /\  x  e.  B )  ->  A. y  e.  C  ( ( f `  y ) `  x
)  e.  A )
1211ralrimiva 2732 . . . 4  |-  ( f  e.  ( ( A  ^m  B )  ^m  C )  ->  A. x  e.  B  A. y  e.  C  ( (
f `  y ) `  x )  e.  A
)
13 eqid 2387 . . . . 5  |-  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) )  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )
1413fmpt2 6357 . . . 4  |-  ( A. x  e.  B  A. y  e.  C  (
( f `  y
) `  x )  e.  A  <->  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) ) : ( B  X.  C
) --> A )
1512, 14sylib 189 . . 3  |-  ( f  e.  ( ( A  ^m  B )  ^m  C )  ->  (
x  e.  B , 
y  e.  C  |->  ( ( f `  y
) `  x )
) : ( B  X.  C ) --> A )
16 simp1 957 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
17 xpexg 4929 . . . . 5  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  X.  C
)  e.  _V )
18173adant1 975 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  C
)  e.  _V )
19 elmapg 6967 . . . 4  |-  ( ( A  e.  V  /\  ( B  X.  C
)  e.  _V )  ->  ( ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  e.  ( A  ^m  ( B  X.  C ) )  <-> 
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) : ( B  X.  C ) --> A ) )
2016, 18, 19syl2anc 643 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  e.  ( A  ^m  ( B  X.  C ) )  <-> 
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) : ( B  X.  C ) --> A ) )
2115, 20syl5ibr 213 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( f  e.  ( ( A  ^m  B
)  ^m  C )  ->  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )  e.  ( A  ^m  ( B  X.  C ) ) ) )
22 elmapi 6974 . . . . . . . . 9  |-  ( g  e.  ( A  ^m  ( B  X.  C
) )  ->  g : ( B  X.  C ) --> A )
2322adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  ->  g :
( B  X.  C
) --> A )
24 fovrn 6155 . . . . . . . . . 10  |-  ( ( g : ( B  X.  C ) --> A  /\  x  e.  B  /\  y  e.  C
)  ->  ( x
g y )  e.  A )
25243expa 1153 . . . . . . . . 9  |-  ( ( ( g : ( B  X.  C ) --> A  /\  x  e.  B )  /\  y  e.  C )  ->  (
x g y )  e.  A )
2625an32s 780 . . . . . . . 8  |-  ( ( ( g : ( B  X.  C ) --> A  /\  y  e.  C )  /\  x  e.  B )  ->  (
x g y )  e.  A )
2723, 26sylanl1 632 . . . . . . 7  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  /\  x  e.  B )  ->  (
x g y )  e.  A )
28 eqid 2387 . . . . . . 7  |-  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( x g y ) )
2927, 28fmptd 5832 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  ->  (
x  e.  B  |->  ( x g y ) ) : B --> A )
30 elmapg 6967 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B
)  <->  ( x  e.  B  |->  ( x g y ) ) : B --> A ) )
31303adant3 977 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B
)  <->  ( x  e.  B  |->  ( x g y ) ) : B --> A ) )
3231ad2antrr 707 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  ->  (
( x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B )  <-> 
( x  e.  B  |->  ( x g y ) ) : B --> A ) )
3329, 32mpbird 224 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  /\  y  e.  C )  ->  (
x  e.  B  |->  ( x g y ) )  e.  ( A  ^m  B ) )
34 eqid 2387 . . . . 5  |-  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
3533, 34fmptd 5832 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) )
3635ex 424 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( g  e.  ( A  ^m  ( B  X.  C ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) ) )
37 ovex 6045 . . . 4  |-  ( A  ^m  B )  e. 
_V
38 simp3 959 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
39 elmapg 6967 . . . 4  |-  ( ( ( A  ^m  B
)  e.  _V  /\  C  e.  X )  ->  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  e.  ( ( A  ^m  B )  ^m  C )  <->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) ) )
4037, 38, 39sylancr 645 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  e.  ( ( A  ^m  B )  ^m  C )  <->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) : C --> ( A  ^m  B ) ) )
4136, 40sylibrd 226 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( g  e.  ( A  ^m  ( B  X.  C ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  e.  ( ( A  ^m  B )  ^m  C ) ) )
42 ffn 5531 . . . . . . . . 9  |-  ( g : ( B  X.  C ) --> A  -> 
g  Fn  ( B  X.  C ) )
4322, 42syl 16 . . . . . . . 8  |-  ( g  e.  ( A  ^m  ( B  X.  C
) )  ->  g  Fn  ( B  X.  C
) )
4443ad2antll 710 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  g  Fn  ( B  X.  C
) )
45 fnov 6117 . . . . . . 7  |-  ( g  Fn  ( B  X.  C )  <->  g  =  ( x  e.  B ,  y  e.  C  |->  ( x g y ) ) )
4644, 45sylib 189 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( x g y ) ) )
47 simp3 959 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  y  e.  C )
4829adantlrl 701 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  y  e.  C
)  ->  ( x  e.  B  |->  ( x g y ) ) : B --> A )
49483adant2 976 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( x  e.  B  |->  ( x g y ) ) : B --> A )
50 simp1l2 1051 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  B  e.  W )
51 simp1l1 1050 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  A  e.  V )
52 fex2 5543 . . . . . . . . . . 11  |-  ( ( ( x  e.  B  |->  ( x g y ) ) : B --> A  /\  B  e.  W  /\  A  e.  V
)  ->  ( x  e.  B  |->  ( x g y ) )  e.  _V )
5349, 50, 51, 52syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( x  e.  B  |->  ( x g y ) )  e.  _V )
5434fvmpt2 5751 . . . . . . . . . 10  |-  ( ( y  e.  C  /\  ( x  e.  B  |->  ( x g y ) )  e.  _V )  ->  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y )  =  ( x  e.  B  |->  ( x g y ) ) )
5547, 53, 54syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y
)  =  ( x  e.  B  |->  ( x g y ) ) )
5655fveq1d 5670 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
)  =  ( ( x  e.  B  |->  ( x g y ) ) `  x ) )
57 simp2 958 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  x  e.  B )
58 ovex 6045 . . . . . . . . 9  |-  ( x g y )  e. 
_V
5928fvmpt2 5751 . . . . . . . . 9  |-  ( ( x  e.  B  /\  ( x g y )  e.  _V )  ->  ( ( x  e.  B  |->  ( x g y ) ) `  x )  =  ( x g y ) )
6057, 58, 59sylancl 644 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
x  e.  B  |->  ( x g y ) ) `  x )  =  ( x g y ) )
6156, 60eqtrd 2419 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  x  e.  B  /\  y  e.  C
)  ->  ( (
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
)  =  ( x g y ) )
6261mpt2eq3dva 6077 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
x  e.  B , 
y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) )  =  ( x  e.  B ,  y  e.  C  |->  ( x g y ) ) )
6346, 62eqtr4d 2422 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y
) `  x )
) )
64 eqid 2387 . . . . . . 7  |-  B  =  B
65 nfcv 2523 . . . . . . . . . 10  |-  F/_ x C
66 nfmpt1 4239 . . . . . . . . . 10  |-  F/_ x
( x  e.  B  |->  ( x g y ) )
6765, 66nfmpt 4238 . . . . . . . . 9  |-  F/_ x
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
6867nfeq2 2534 . . . . . . . 8  |-  F/ x  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
69 nfmpt1 4239 . . . . . . . . . . . 12  |-  F/_ y
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
7069nfeq2 2534 . . . . . . . . . . 11  |-  F/ y  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )
71 fveq1 5667 . . . . . . . . . . . . 13  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( f `  y )  =  ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) )
7271fveq1d 5670 . . . . . . . . . . . 12  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( ( f `
 y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) )
7372a1d 23 . . . . . . . . . . 11  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( y  e.  C  ->  ( (
f `  y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) ) )
7470, 73ralrimi 2730 . . . . . . . . . 10  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  A. y  e.  C  ( ( f `  y ) `  x
)  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
) )
75 eqid 2387 . . . . . . . . . 10  |-  C  =  C
7674, 75jctil 524 . . . . . . . . 9  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( C  =  C  /\  A. y  e.  C  ( (
f `  y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) ) )
7776a1d 23 . . . . . . . 8  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( x  e.  B  ->  ( C  =  C  /\  A. y  e.  C  ( (
f `  y ) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `
 y ) `  x ) ) ) )
7868, 77ralrimi 2730 . . . . . . 7  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  A. x  e.  B  ( C  =  C  /\  A. y  e.  C  ( ( f `  y ) `  x
)  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
) ) )
79 mpt2eq123 6072 . . . . . . 7  |-  ( ( B  =  B  /\  A. x  e.  B  ( C  =  C  /\  A. y  e.  C  ( ( f `  y
) `  x )  =  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y
) `  x )
) )  ->  (
x  e.  B , 
y  e.  C  |->  ( ( f `  y
) `  x )
)  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `  x
) ) )
8064, 78, 79sylancr 645 . . . . . 6  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `
 x ) ) )
8180eqeq2d 2398 . . . . 5  |-  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )  <->  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) `  y ) `
 x ) ) ) )
8263, 81syl5ibrcom 214 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  ->  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) ) )
835ad2antrl 709 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f : C --> ( A  ^m  B ) )
8483feqmptd 5718 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f  =  ( y  e.  C  |->  ( f `  y ) ) )
85 simprl 733 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f  e.  ( ( A  ^m  B )  ^m  C
) )
8685, 8sylan 458 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  y  e.  C
)  ->  ( f `  y ) : B --> A )
8786feqmptd 5718 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  (
f  e.  ( ( A  ^m  B )  ^m  C )  /\  g  e.  ( A  ^m  ( B  X.  C
) ) ) )  /\  y  e.  C
)  ->  ( f `  y )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) )
8887mpteq2dva 4236 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
y  e.  C  |->  ( f `  y ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `
 x ) ) ) )
8984, 88eqtrd 2419 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `
 y ) `  x ) ) ) )
90 nfmpt22 6080 . . . . . . . . 9  |-  F/_ y
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )
9190nfeq2 2534 . . . . . . . 8  |-  F/ y  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) )
92 eqidd 2388 . . . . . . . . 9  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  ->  B  =  B )
93 nfmpt21 6079 . . . . . . . . . . 11  |-  F/_ x
( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) )
9493nfeq2 2534 . . . . . . . . . 10  |-  F/ x  g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )
95 nfv 1626 . . . . . . . . . 10  |-  F/ x  y  e.  C
96 fvex 5682 . . . . . . . . . . . . 13  |-  ( ( f `  y ) `
 x )  e. 
_V
9713ovmpt4g 6135 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  y  e.  C  /\  ( ( f `  y ) `  x
)  e.  _V )  ->  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) ) y )  =  ( ( f `  y
) `  x )
)
9896, 97mp3an3 1268 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) ) y )  =  ( ( f `  y
) `  x )
)
99 oveq 6026 . . . . . . . . . . . . 13  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( x g y )  =  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `  x
) ) y ) )
10099eqeq1d 2395 . . . . . . . . . . . 12  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( ( x g y )  =  ( ( f `  y
) `  x )  <->  ( x ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) ) y )  =  ( ( f `  y ) `
 x ) ) )
10198, 100syl5ibr 213 . . . . . . . . . . 11  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( ( x  e.  B  /\  y  e.  C )  ->  (
x g y )  =  ( ( f `
 y ) `  x ) ) )
102101exp3acom23 1378 . . . . . . . . . 10  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  ->  ( x  e.  B  ->  ( x g y )  =  ( ( f `  y ) `
 x ) ) ) )
10394, 95, 102ralrimd 2737 . . . . . . . . 9  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  ->  A. x  e.  B  ( x g y )  =  ( ( f `  y ) `
 x ) ) )
104 mpteq12 4229 . . . . . . . . 9  |-  ( ( B  =  B  /\  A. x  e.  B  ( x g y )  =  ( ( f `
 y ) `  x ) )  -> 
( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) )
10592, 103, 104ee12an 1369 . . . . . . . 8  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  ->  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) ) )
10691, 105ralrimi 2730 . . . . . . 7  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  ->  A. y  e.  C  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y
) `  x )
) )
107 mpteq12 4229 . . . . . . 7  |-  ( ( C  =  C  /\  A. y  e.  C  ( x  e.  B  |->  ( x g y ) )  =  ( x  e.  B  |->  ( ( f `  y ) `
 x ) ) )  ->  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `
 x ) ) ) )
10875, 106, 107sylancr 645 . . . . . 6  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `  x
) ) ) )
109108eqeq2d 2398 . . . . 5  |-  ( g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `
 y ) `  x ) )  -> 
( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  <->  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( ( f `  y ) `  x
) ) ) ) )
11089, 109syl5ibrcom 214 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) )  ->  f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) ) ) )
11182, 110impbid 184 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) ) )  ->  (
f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  <->  g  =  ( x  e.  B , 
y  e.  C  |->  ( ( f `  y
) `  x )
) ) )
112111ex 424 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( f  e.  ( ( A  ^m  B )  ^m  C
)  /\  g  e.  ( A  ^m  ( B  X.  C ) ) )  ->  ( f  =  ( y  e.  C  |->  ( x  e.  B  |->  ( x g y ) ) )  <-> 
g  =  ( x  e.  B ,  y  e.  C  |->  ( ( f `  y ) `
 x ) ) ) ) )
1132, 4, 21, 41, 112en3d 7080 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  B )  ^m  C
)  ~~  ( A  ^m  ( B  X.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899   class class class wbr 4153    e. cmpt 4207    X. cxp 4816    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022    ^m cmap 6954    ~~ cen 7042
This theorem is referenced by:  mappwen  7926  cfpwsdom  8392  rpnnen  12753  rexpen  12754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-map 6956  df-en 7046
  Copyright terms: Public domain W3C validator