HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayete3i Unicode version

Theorem mayete3i 22268
Description: Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayete3.a  |-  A  e. 
CH
mayete3.b  |-  B  e. 
CH
mayete3.c  |-  C  e. 
CH
mayete3.d  |-  D  e. 
CH
mayete3.f  |-  F  e. 
CH
mayete3.g  |-  G  e. 
CH
mayete3.ac  |-  A  C_  ( _|_ `  C )
mayete3.af  |-  A  C_  ( _|_ `  F )
mayete3.cf  |-  C  C_  ( _|_ `  F )
mayete3.ab  |-  A  C_  ( _|_ `  B )
mayete3.cd  |-  C  C_  ( _|_ `  D )
mayete3.fg  |-  F  C_  ( _|_ `  G )
mayete3.x  |-  X  =  ( ( A  vH  C )  vH  F
)
mayete3.y  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
mayete3.z  |-  Z  =  ( ( B  vH  D )  vH  G
)
Assertion
Ref Expression
mayete3i  |-  ( X  i^i  Y )  C_  Z

Proof of Theorem mayete3i
StepHypRef Expression
1 elin 3333 . . . . . . . 8  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
2 mayete3.a . . . . . . . . . . . . 13  |-  A  e. 
CH
3 mayete3.c . . . . . . . . . . . . 13  |-  C  e. 
CH
42, 3chjcli 21997 . . . . . . . . . . . 12  |-  ( A  vH  C )  e. 
CH
5 mayete3.f . . . . . . . . . . . 12  |-  F  e. 
CH
64, 5chjcli 21997 . . . . . . . . . . 11  |-  ( ( A  vH  C )  vH  F )  e. 
CH
76cheli 21773 . . . . . . . . . 10  |-  ( x  e.  ( ( A  vH  C )  vH  F )  ->  x  e.  ~H )
8 mayete3.x . . . . . . . . . 10  |-  X  =  ( ( A  vH  C )  vH  F
)
97, 8eleq2s 2350 . . . . . . . . 9  |-  ( x  e.  X  ->  x  e.  ~H )
109adantr 453 . . . . . . . 8  |-  ( ( x  e.  X  /\  x  e.  Y )  ->  x  e.  ~H )
111, 10sylbi 189 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  ~H )
12 ax-hvmulid 21547 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  x )
13 2cn 9784 . . . . . . . . . . 11  |-  2  e.  CC
14 2ne0 9797 . . . . . . . . . . 11  |-  2  =/=  0
15 recid2 9407 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  =/=  0 )  -> 
( ( 1  / 
2 )  x.  2 )  =  1 )
1613, 14, 15mp2an 656 . . . . . . . . . 10  |-  ( ( 1  /  2 )  x.  2 )  =  1
1716oveq1i 5802 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  2 )  .h  x )  =  ( 1  .h  x
)
1813, 14reccli 9458 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
19 ax-hvmulass 21548 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  2  e.  CC  /\  x  e.  ~H )  ->  (
( ( 1  / 
2 )  x.  2 )  .h  x )  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2018, 13, 19mp3an12 1272 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
( ( 1  / 
2 )  x.  2 )  .h  x )  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2117, 20syl5eqr 2304 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2212, 21eqtr3d 2292 . . . . . . 7  |-  ( x  e.  ~H  ->  x  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2311, 22syl 17 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  ->  x  =  ( ( 1  / 
2 )  .h  (
2  .h  x ) ) )
24 hv2times 21601 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
2  .h  x )  =  ( x  +h  x ) )
2524oveq1d 5807 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( 2  .h  x
)  +h  x )  =  ( ( x  +h  x )  +h  x ) )
2611, 25syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
2  .h  x )  +h  x )  =  ( ( x  +h  x )  +h  x
) )
27 inss2 3365 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  Y
2827sseli 3151 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  Y )
29 mayete3.y . . . . . . . . . . . . . . 15  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
3029elin2 3334 . . . . . . . . . . . . . 14  |-  ( x  e.  Y  <->  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D ) )  /\  x  e.  ( F  vH  G ) ) )
31 elin 3333 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  <->  ( x  e.  ( A  vH  B
)  /\  x  e.  ( C  vH  D ) ) )
32 mayete3.ab . . . . . . . . . . . . . . . . . . 19  |-  A  C_  ( _|_ `  B )
33 mayete3.b . . . . . . . . . . . . . . . . . . . 20  |-  B  e. 
CH
342, 33pjdsi 22252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( A  vH  B )  /\  A  C_  ( _|_ `  B
) )  ->  x  =  ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  B ) `  x
) ) )
3532, 34mpan2 655 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A  vH  B )  ->  x  =  ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  B ) `  x
) ) )
36 mayete3.cd . . . . . . . . . . . . . . . . . . 19  |-  C  C_  ( _|_ `  D )
37 mayete3.d . . . . . . . . . . . . . . . . . . . 20  |-  D  e. 
CH
383, 37pjdsi 22252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( C  vH  D )  /\  C  C_  ( _|_ `  D
) )  ->  x  =  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )
3936, 38mpan2 655 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( C  vH  D )  ->  x  =  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )
4035, 39oveqan12d 5811 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( A  vH  B )  /\  x  e.  ( C  vH  D ) )  -> 
( x  +h  x
)  =  ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  B ) `
 x ) )  +h  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) ) )
4131, 40sylbi 189 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  (
x  +h  x )  =  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  B ) `  x
) )  +h  (
( ( proj  h `  C ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
42 inss1 3364 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  vH  B )  i^i  ( C  vH  D ) )  C_  ( A  vH  B )
4342sseli 3151 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  x  e.  ( A  vH  B
) )
442, 33chjcli 21997 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  B )  e. 
CH
4544cheli 21773 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A  vH  B )  ->  x  e.  ~H )
462pjhcli 21958 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  A
) `  x )  e.  ~H )
4733pjhcli 21958 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  B
) `  x )  e.  ~H )
483pjhcli 21958 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  C
) `  x )  e.  ~H )
4937pjhcli 21958 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  D
) `  x )  e.  ~H )
50 hvadd4 21576 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( proj 
h `  A ) `  x )  e.  ~H  /\  ( ( proj  h `  B ) `  x
)  e.  ~H )  /\  ( ( ( proj 
h `  C ) `  x )  e.  ~H  /\  ( ( proj  h `  D ) `  x
)  e.  ~H )
)  ->  ( (
( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  B ) `
 x ) )  +h  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
5146, 47, 48, 49, 50syl22anc 1188 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  B
) `  x )
)  +h  ( ( ( proj  h `  C
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
5243, 45, 513syl 20 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  B
) `  x )
)  +h  ( ( ( proj  h `  C
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
5341, 52eqtrd 2290 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  (
x  +h  x )  =  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
54 mayete3.fg . . . . . . . . . . . . . . . 16  |-  F  C_  ( _|_ `  G )
55 mayete3.g . . . . . . . . . . . . . . . . 17  |-  G  e. 
CH
565, 55pjdsi 22252 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( F  vH  G )  /\  F  C_  ( _|_ `  G
) )  ->  x  =  ( ( (
proj  h `  F ) `
 x )  +h  ( ( proj  h `  G ) `  x
) ) )
5754, 56mpan2 655 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( F  vH  G )  ->  x  =  ( ( (
proj  h `  F ) `
 x )  +h  ( ( proj  h `  G ) `  x
) ) )
5853, 57oveqan12d 5811 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D ) )  /\  x  e.  ( F  vH  G ) )  -> 
( ( x  +h  x )  +h  x
)  =  ( ( ( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) ) )
5930, 58sylbi 189 . . . . . . . . . . . . 13  |-  ( x  e.  Y  ->  (
( x  +h  x
)  +h  x )  =  ( ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) ) )
6028, 59syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
x  +h  x )  +h  x )  =  ( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) )  +h  ( ( ( proj  h `  F
) `  x )  +h  ( ( proj  h `  G ) `  x
) ) ) )
61 hvaddcl 21553 . . . . . . . . . . . . . . 15  |-  ( ( ( ( proj  h `  A ) `  x
)  e.  ~H  /\  ( ( proj  h `  C ) `  x
)  e.  ~H )  ->  ( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  e.  ~H )
6246, 48, 61syl2anc 645 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  e.  ~H )
63 hvaddcl 21553 . . . . . . . . . . . . . . 15  |-  ( ( ( ( proj  h `  B ) `  x
)  e.  ~H  /\  ( ( proj  h `  D ) `  x
)  e.  ~H )  ->  ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ~H )
6447, 49, 63syl2anc 645 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  e.  ~H )
655pjhcli 21958 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( proj  h `  F
) `  x )  e.  ~H )
6655pjhcli 21958 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( proj  h `  G
) `  x )  e.  ~H )
67 hvadd4 21576 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  e.  ~H  /\  ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ~H )  /\  ( ( ( proj 
h `  F ) `  x )  e.  ~H  /\  ( ( proj  h `  G ) `  x
)  e.  ~H )
)  ->  ( (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) )  =  ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
6862, 64, 65, 66, 67syl22anc 1188 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) )  +h  ( ( ( proj  h `  F
) `  x )  +h  ( ( proj  h `  G ) `  x
) ) )  =  ( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
6911, 68syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) )  =  ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
7026, 60, 693eqtrd 2294 . . . . . . . . . . 11  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
2  .h  x )  +h  x )  =  ( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
71 inss1 3364 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  X
7271sseli 3151 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  X )
7372, 8syl6eleq 2348 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  ( ( A  vH  C )  vH  F
) )
74 mayete3.ac . . . . . . . . . . . 12  |-  A  C_  ( _|_ `  C )
75 mayete3.af . . . . . . . . . . . . 13  |-  A  C_  ( _|_ `  F )
76 mayete3.cf . . . . . . . . . . . . 13  |-  C  C_  ( _|_ `  F )
772, 3, 5pjds3i 22253 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( ( A  vH  C
)  vH  F )  /\  A  C_  ( _|_ `  C ) )  /\  ( A  C_  ( _|_ `  F )  /\  C  C_  ( _|_ `  F
) ) )  ->  x  =  ( (
( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( proj 
h `  F ) `  x ) ) )
7875, 76, 77mpanr12 669 . . . . . . . . . . . 12  |-  ( ( x  e.  ( ( A  vH  C )  vH  F )  /\  A  C_  ( _|_ `  C
) )  ->  x  =  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )
7973, 74, 78sylancl 646 . . . . . . . . . . 11  |-  ( x  e.  ( X  i^i  Y )  ->  x  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )
8070, 79oveq12d 5810 . . . . . . . . . 10  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( 2  .h  x
)  +h  x )  -h  x )  =  ( ( ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( proj 
h `  F ) `  x ) )  +h  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
) )  -h  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( (
proj  h `  F ) `
 x ) ) ) )
81 hvmulcl 21554 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  ~H )  ->  ( 2  .h  x
)  e.  ~H )
8213, 81mpan 654 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
2  .h  x )  e.  ~H )
83 hvpncan 21579 . . . . . . . . . . . 12  |-  ( ( ( 2  .h  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( 2  .h  x )  +h  x )  -h  x
)  =  ( 2  .h  x ) )
8482, 83mpancom 653 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( 2  .h  x )  +h  x
)  -h  x )  =  ( 2  .h  x ) )
8511, 84syl 17 . . . . . . . . . 10  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( 2  .h  x
)  +h  x )  -h  x )  =  ( 2  .h  x
) )
8680, 85eqtr3d 2292 . . . . . . . . 9  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )  -h  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )  =  ( 2  .h  x ) )
87 hvaddcl 21553 . . . . . . . . . . . 12  |-  ( ( ( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  e.  ~H  /\  ( ( proj  h `  F ) `  x
)  e.  ~H )  ->  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  e.  ~H )
8862, 65, 87syl2anc 645 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( (
proj  h `  F ) `
 x ) )  e.  ~H )
89 hvaddcl 21553 . . . . . . . . . . . 12  |-  ( ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ~H  /\  ( ( proj  h `  G ) `  x
)  e.  ~H )  ->  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
)  e.  ~H )
9064, 66, 89syl2anc 645 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) )  e.  ~H )
91 hvpncan2 21580 . . . . . . . . . . 11  |-  ( ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  e.  ~H  /\  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
)  e.  ~H )  ->  ( ( ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( proj 
h `  F ) `  x ) )  +h  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
) )  -h  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( (
proj  h `  F ) `
 x ) ) )  =  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )
9288, 90, 91syl2anc 645 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )  -h  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )  =  ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) ) )
9311, 92syl 17 . . . . . . . . 9  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )  -h  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )  =  ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) ) )
9486, 93eqtr3d 2292 . . . . . . . 8  |-  ( x  e.  ( X  i^i  Y )  ->  ( 2  .h  x )  =  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
) )
9533pjcli 21957 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( proj  h `  B
) `  x )  e.  B )
9637pjcli 21957 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( proj  h `  D
) `  x )  e.  D )
9733chshii 21768 . . . . . . . . . . . 12  |-  B  e.  SH
9837chshii 21768 . . . . . . . . . . . 12  |-  D  e.  SH
9997, 98shsvai 21904 . . . . . . . . . . 11  |-  ( ( ( ( proj  h `  B ) `  x
)  e.  B  /\  ( ( proj  h `  D ) `  x
)  e.  D )  ->  ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  e.  ( B  +H  D ) )
10095, 96, 99syl2anc 645 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  e.  ( B  +H  D ) )
10155pjcli 21957 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( proj  h `  G
) `  x )  e.  G )
10297, 98shscli 21857 . . . . . . . . . . 11  |-  ( B  +H  D )  e.  SH
10355chshii 21768 . . . . . . . . . . 11  |-  G  e.  SH
104102, 103shsvai 21904 . . . . . . . . . 10  |-  ( ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ( B  +H  D )  /\  ( ( proj  h `  G ) `  x
)  e.  G )  ->  ( ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
)  e.  ( ( B  +H  D )  +H  G ) )
105100, 101, 104syl2anc 645 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) )  e.  ( ( B  +H  D )  +H  G ) )
10611, 105syl 17 . . . . . . . 8  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) )  e.  ( ( B  +H  D )  +H  G
) )
10794, 106eqeltrd 2332 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  ->  ( 2  .h  x )  e.  ( ( B  +H  D )  +H  G
) )
108102, 103shscli 21857 . . . . . . . 8  |-  ( ( B  +H  D )  +H  G )  e.  SH
109 shmulcl 21758 . . . . . . . 8  |-  ( ( ( ( B  +H  D )  +H  G
)  e.  SH  /\  ( 1  /  2
)  e.  CC  /\  ( 2  .h  x
)  e.  ( ( B  +H  D )  +H  G ) )  ->  ( ( 1  /  2 )  .h  ( 2  .h  x
) )  e.  ( ( B  +H  D
)  +H  G ) )
110108, 18, 109mp3an12 1272 . . . . . . 7  |-  ( ( 2  .h  x )  e.  ( ( B  +H  D )  +H  G )  ->  (
( 1  /  2
)  .h  ( 2  .h  x ) )  e.  ( ( B  +H  D )  +H  G ) )
111107, 110syl 17 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
1  /  2 )  .h  ( 2  .h  x ) )  e.  ( ( B  +H  D )  +H  G
) )
11223, 111eqeltrd 2332 . . . . 5  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  ( ( B  +H  D )  +H  G
) )
113112ssriv 3159 . . . 4  |-  ( X  i^i  Y )  C_  ( ( B  +H  D )  +H  G
)
11433, 37chsleji 21998 . . . . 5  |-  ( B  +H  D )  C_  ( B  vH  D )
11533, 37chjcli 21997 . . . . . . 7  |-  ( B  vH  D )  e. 
CH
116115chshii 21768 . . . . . 6  |-  ( B  vH  D )  e.  SH
117102, 116, 103shlessi 21917 . . . . 5  |-  ( ( B  +H  D ) 
C_  ( B  vH  D )  ->  (
( B  +H  D
)  +H  G ) 
C_  ( ( B  vH  D )  +H  G ) )
118114, 117ax-mp 10 . . . 4  |-  ( ( B  +H  D )  +H  G )  C_  ( ( B  vH  D )  +H  G
)
119113, 118sstri 3163 . . 3  |-  ( X  i^i  Y )  C_  ( ( B  vH  D )  +H  G
)
120115, 55chsleji 21998 . . 3  |-  ( ( B  vH  D )  +H  G )  C_  ( ( B  vH  D )  vH  G
)
121119, 120sstri 3163 . 2  |-  ( X  i^i  Y )  C_  ( ( B  vH  D )  vH  G
)
122 mayete3.z . 2  |-  Z  =  ( ( B  vH  D )  vH  G
)
123121, 122sseqtr4i 3186 1  |-  ( X  i^i  Y )  C_  Z
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421    i^i cin 3126    C_ wss 3127   ` cfv 4673  (class class class)co 5792   CCcc 8703   0cc0 8705   1c1 8706    x. cmul 8710    / cdiv 9391   2c2 9763   ~Hchil 21460    +h cva 21461    .h csm 21462    -h cmv 21466   SHcsh 21469   CHcch 21470   _|_cort 21471    +H cph 21472    vH chj 21474   proj 
hcpjh 21478
This theorem is referenced by:  mayetes3i  22270
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785  ax-hilex 21540  ax-hfvadd 21541  ax-hvcom 21542  ax-hvass 21543  ax-hv0cl 21544  ax-hvaddid 21545  ax-hfvmul 21546  ax-hvmulid 21547  ax-hvmulass 21548  ax-hvdistr1 21549  ax-hvdistr2 21550  ax-hvmul0 21551  ax-hfi 21619  ax-his1 21622  ax-his2 21623  ax-his3 21624  ax-his4 21625  ax-hcompl 21742
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-seq 11014  df-exp 11072  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-rlim 11929  df-sum 12125  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-cn 16920  df-cnp 16921  df-lm 16922  df-haus 17006  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cfil 18644  df-cau 18645  df-cmet 18646  df-grpo 20819  df-gid 20820  df-ginv 20821  df-gdiv 20822  df-ablo 20910  df-subgo 20930  df-vc 21063  df-nv 21109  df-va 21112  df-ba 21113  df-sm 21114  df-0v 21115  df-vs 21116  df-nmcv 21117  df-ims 21118  df-dip 21235  df-ssp 21259  df-ph 21352  df-cbn 21403  df-hnorm 21509  df-hba 21510  df-hvsub 21512  df-hlim 21513  df-hcau 21514  df-sh 21747  df-ch 21762  df-oc 21792  df-ch0 21793  df-shs 21848  df-chj 21850  df-pjh 21935
  Copyright terms: Public domain W3C validator