HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayete3i Structured version   Unicode version

Theorem mayete3i 23230
Description: Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayete3.a  |-  A  e. 
CH
mayete3.b  |-  B  e. 
CH
mayete3.c  |-  C  e. 
CH
mayete3.d  |-  D  e. 
CH
mayete3.f  |-  F  e. 
CH
mayete3.g  |-  G  e. 
CH
mayete3.ac  |-  A  C_  ( _|_ `  C )
mayete3.af  |-  A  C_  ( _|_ `  F )
mayete3.cf  |-  C  C_  ( _|_ `  F )
mayete3.ab  |-  A  C_  ( _|_ `  B )
mayete3.cd  |-  C  C_  ( _|_ `  D )
mayete3.fg  |-  F  C_  ( _|_ `  G )
mayete3.x  |-  X  =  ( ( A  vH  C )  vH  F
)
mayete3.y  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
mayete3.z  |-  Z  =  ( ( B  vH  D )  vH  G
)
Assertion
Ref Expression
mayete3i  |-  ( X  i^i  Y )  C_  Z

Proof of Theorem mayete3i
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3530 . . . . . . . 8  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
2 mayete3.a . . . . . . . . . . . . 13  |-  A  e. 
CH
3 mayete3.c . . . . . . . . . . . . 13  |-  C  e. 
CH
42, 3chjcli 22959 . . . . . . . . . . . 12  |-  ( A  vH  C )  e. 
CH
5 mayete3.f . . . . . . . . . . . 12  |-  F  e. 
CH
64, 5chjcli 22959 . . . . . . . . . . 11  |-  ( ( A  vH  C )  vH  F )  e. 
CH
76cheli 22735 . . . . . . . . . 10  |-  ( x  e.  ( ( A  vH  C )  vH  F )  ->  x  e.  ~H )
8 mayete3.x . . . . . . . . . 10  |-  X  =  ( ( A  vH  C )  vH  F
)
97, 8eleq2s 2528 . . . . . . . . 9  |-  ( x  e.  X  ->  x  e.  ~H )
109adantr 452 . . . . . . . 8  |-  ( ( x  e.  X  /\  x  e.  Y )  ->  x  e.  ~H )
111, 10sylbi 188 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  ~H )
12 ax-hvmulid 22509 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  x )
13 2cn 10070 . . . . . . . . . . 11  |-  2  e.  CC
14 2ne0 10083 . . . . . . . . . . 11  |-  2  =/=  0
15 recid2 9693 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2  =/=  0 )  -> 
( ( 1  / 
2 )  x.  2 )  =  1 )
1613, 14, 15mp2an 654 . . . . . . . . . 10  |-  ( ( 1  /  2 )  x.  2 )  =  1
1716oveq1i 6091 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  2 )  .h  x )  =  ( 1  .h  x
)
1813, 14reccli 9744 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
19 ax-hvmulass 22510 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  2  e.  CC  /\  x  e.  ~H )  ->  (
( ( 1  / 
2 )  x.  2 )  .h  x )  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2018, 13, 19mp3an12 1269 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
( ( 1  / 
2 )  x.  2 )  .h  x )  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2117, 20syl5eqr 2482 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2212, 21eqtr3d 2470 . . . . . . 7  |-  ( x  e.  ~H  ->  x  =  ( ( 1  /  2 )  .h  ( 2  .h  x
) ) )
2311, 22syl 16 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  ->  x  =  ( ( 1  / 
2 )  .h  (
2  .h  x ) ) )
24 hv2times 22563 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
2  .h  x )  =  ( x  +h  x ) )
2524oveq1d 6096 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( 2  .h  x
)  +h  x )  =  ( ( x  +h  x )  +h  x ) )
2611, 25syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
2  .h  x )  +h  x )  =  ( ( x  +h  x )  +h  x
) )
27 inss2 3562 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  Y
2827sseli 3344 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  Y )
29 mayete3.y . . . . . . . . . . . . . . 15  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
3029elin2 3531 . . . . . . . . . . . . . 14  |-  ( x  e.  Y  <->  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D ) )  /\  x  e.  ( F  vH  G ) ) )
31 elin 3530 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  <->  ( x  e.  ( A  vH  B
)  /\  x  e.  ( C  vH  D ) ) )
32 mayete3.ab . . . . . . . . . . . . . . . . . . 19  |-  A  C_  ( _|_ `  B )
33 mayete3.b . . . . . . . . . . . . . . . . . . . 20  |-  B  e. 
CH
342, 33pjdsi 23214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( A  vH  B )  /\  A  C_  ( _|_ `  B
) )  ->  x  =  ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  B ) `  x
) ) )
3532, 34mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A  vH  B )  ->  x  =  ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  B ) `  x
) ) )
36 mayete3.cd . . . . . . . . . . . . . . . . . . 19  |-  C  C_  ( _|_ `  D )
37 mayete3.d . . . . . . . . . . . . . . . . . . . 20  |-  D  e. 
CH
383, 37pjdsi 23214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( C  vH  D )  /\  C  C_  ( _|_ `  D
) )  ->  x  =  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )
3936, 38mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( C  vH  D )  ->  x  =  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )
4035, 39oveqan12d 6100 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( A  vH  B )  /\  x  e.  ( C  vH  D ) )  -> 
( x  +h  x
)  =  ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  B ) `
 x ) )  +h  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) ) )
4131, 40sylbi 188 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  (
x  +h  x )  =  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  B ) `  x
) )  +h  (
( ( proj  h `  C ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
42 inss1 3561 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  vH  B )  i^i  ( C  vH  D ) )  C_  ( A  vH  B )
4342sseli 3344 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  x  e.  ( A  vH  B
) )
442, 33chjcli 22959 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  B )  e. 
CH
4544cheli 22735 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A  vH  B )  ->  x  e.  ~H )
462pjhcli 22920 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  A
) `  x )  e.  ~H )
4733pjhcli 22920 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  B
) `  x )  e.  ~H )
483pjhcli 22920 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  C
) `  x )  e.  ~H )
4937pjhcli 22920 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~H  ->  (
( proj  h `  D
) `  x )  e.  ~H )
50 hvadd4 22538 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( proj 
h `  A ) `  x )  e.  ~H  /\  ( ( proj  h `  B ) `  x
)  e.  ~H )  /\  ( ( ( proj 
h `  C ) `  x )  e.  ~H  /\  ( ( proj  h `  D ) `  x
)  e.  ~H )
)  ->  ( (
( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  B ) `
 x ) )  +h  ( ( (
proj  h `  C ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
5146, 47, 48, 49, 50syl22anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  B
) `  x )
)  +h  ( ( ( proj  h `  C
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
5243, 45, 513syl 19 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  B
) `  x )
)  +h  ( ( ( proj  h `  C
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
5341, 52eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D
) )  ->  (
x  +h  x )  =  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) ) )
54 mayete3.fg . . . . . . . . . . . . . . . 16  |-  F  C_  ( _|_ `  G )
55 mayete3.g . . . . . . . . . . . . . . . . 17  |-  G  e. 
CH
565, 55pjdsi 23214 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( F  vH  G )  /\  F  C_  ( _|_ `  G
) )  ->  x  =  ( ( (
proj  h `  F ) `
 x )  +h  ( ( proj  h `  G ) `  x
) ) )
5754, 56mpan2 653 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( F  vH  G )  ->  x  =  ( ( (
proj  h `  F ) `
 x )  +h  ( ( proj  h `  G ) `  x
) ) )
5853, 57oveqan12d 6100 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ( A  vH  B )  i^i  ( C  vH  D ) )  /\  x  e.  ( F  vH  G ) )  -> 
( ( x  +h  x )  +h  x
)  =  ( ( ( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) ) )
5930, 58sylbi 188 . . . . . . . . . . . . 13  |-  ( x  e.  Y  ->  (
( x  +h  x
)  +h  x )  =  ( ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) ) )
6028, 59syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
x  +h  x )  +h  x )  =  ( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) )  +h  ( ( ( proj  h `  F
) `  x )  +h  ( ( proj  h `  G ) `  x
) ) ) )
61 hvaddcl 22515 . . . . . . . . . . . . . . 15  |-  ( ( ( ( proj  h `  A ) `  x
)  e.  ~H  /\  ( ( proj  h `  C ) `  x
)  e.  ~H )  ->  ( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  e.  ~H )
6246, 48, 61syl2anc 643 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  e.  ~H )
63 hvaddcl 22515 . . . . . . . . . . . . . . 15  |-  ( ( ( ( proj  h `  B ) `  x
)  e.  ~H  /\  ( ( proj  h `  D ) `  x
)  e.  ~H )  ->  ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ~H )
6447, 49, 63syl2anc 643 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  e.  ~H )
655pjhcli 22920 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( proj  h `  F
) `  x )  e.  ~H )
6655pjhcli 22920 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  (
( proj  h `  G
) `  x )  e.  ~H )
67 hvadd4 22538 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  e.  ~H  /\  ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ~H )  /\  ( ( ( proj 
h `  F ) `  x )  e.  ~H  /\  ( ( proj  h `  G ) `  x
)  e.  ~H )
)  ->  ( (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) )  =  ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
6862, 64, 65, 66, 67syl22anc 1185 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) ) )  +h  ( ( ( proj  h `  F
) `  x )  +h  ( ( proj  h `  G ) `  x
) ) )  =  ( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
6911, 68syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) ) )  +h  ( ( ( proj 
h `  F ) `  x )  +h  (
( proj  h `  G
) `  x )
) )  =  ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
7026, 60, 693eqtrd 2472 . . . . . . . . . . 11  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
2  .h  x )  +h  x )  =  ( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) ) )
71 inss1 3561 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  X
7271sseli 3344 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  X )
7372, 8syl6eleq 2526 . . . . . . . . . . . 12  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  ( ( A  vH  C )  vH  F
) )
74 mayete3.ac . . . . . . . . . . . 12  |-  A  C_  ( _|_ `  C )
75 mayete3.af . . . . . . . . . . . . 13  |-  A  C_  ( _|_ `  F )
76 mayete3.cf . . . . . . . . . . . . 13  |-  C  C_  ( _|_ `  F )
772, 3, 5pjds3i 23215 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( ( A  vH  C
)  vH  F )  /\  A  C_  ( _|_ `  C ) )  /\  ( A  C_  ( _|_ `  F )  /\  C  C_  ( _|_ `  F
) ) )  ->  x  =  ( (
( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( proj 
h `  F ) `  x ) ) )
7875, 76, 77mpanr12 667 . . . . . . . . . . . 12  |-  ( ( x  e.  ( ( A  vH  C )  vH  F )  /\  A  C_  ( _|_ `  C
) )  ->  x  =  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )
7973, 74, 78sylancl 644 . . . . . . . . . . 11  |-  ( x  e.  ( X  i^i  Y )  ->  x  =  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )
8070, 79oveq12d 6099 . . . . . . . . . 10  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( 2  .h  x
)  +h  x )  -h  x )  =  ( ( ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( proj 
h `  F ) `  x ) )  +h  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
) )  -h  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( (
proj  h `  F ) `
 x ) ) ) )
81 hvmulcl 22516 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  ~H )  ->  ( 2  .h  x
)  e.  ~H )
8213, 81mpan 652 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
2  .h  x )  e.  ~H )
83 hvpncan 22541 . . . . . . . . . . . 12  |-  ( ( ( 2  .h  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( 2  .h  x )  +h  x )  -h  x
)  =  ( 2  .h  x ) )
8482, 83mpancom 651 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( 2  .h  x )  +h  x
)  -h  x )  =  ( 2  .h  x ) )
8511, 84syl 16 . . . . . . . . . 10  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( 2  .h  x
)  +h  x )  -h  x )  =  ( 2  .h  x
) )
8680, 85eqtr3d 2470 . . . . . . . . 9  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )  -h  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )  =  ( 2  .h  x ) )
87 hvaddcl 22515 . . . . . . . . . . . 12  |-  ( ( ( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  e.  ~H  /\  ( ( proj  h `  F ) `  x
)  e.  ~H )  ->  ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  e.  ~H )
8862, 65, 87syl2anc 643 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( (
proj  h `  F ) `
 x ) )  e.  ~H )
89 hvaddcl 22515 . . . . . . . . . . . 12  |-  ( ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ~H  /\  ( ( proj  h `  G ) `  x
)  e.  ~H )  ->  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
)  e.  ~H )
9064, 66, 89syl2anc 643 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) )  e.  ~H )
91 hvpncan2 22542 . . . . . . . . . . 11  |-  ( ( ( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  e.  ~H  /\  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
)  e.  ~H )  ->  ( ( ( ( ( ( proj  h `  A ) `  x
)  +h  ( (
proj  h `  C ) `
 x ) )  +h  ( ( proj 
h `  F ) `  x ) )  +h  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
) )  -h  (
( ( ( proj 
h `  A ) `  x )  +h  (
( proj  h `  C
) `  x )
)  +h  ( (
proj  h `  F ) `
 x ) ) )  =  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )
9288, 90, 91syl2anc 643 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )  -h  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )  =  ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) ) )
9311, 92syl 16 . . . . . . . . 9  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( ( (
proj  h `  A ) `
 x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
)  +h  ( ( ( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) ) )  -h  ( ( ( ( proj  h `  A
) `  x )  +h  ( ( proj  h `  C ) `  x
) )  +h  (
( proj  h `  F
) `  x )
) )  =  ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) ) )
9486, 93eqtr3d 2470 . . . . . . . 8  |-  ( x  e.  ( X  i^i  Y )  ->  ( 2  .h  x )  =  ( ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
) )
9533pjcli 22919 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( proj  h `  B
) `  x )  e.  B )
9637pjcli 22919 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( proj  h `  D
) `  x )  e.  D )
9733chshii 22730 . . . . . . . . . . . 12  |-  B  e.  SH
9837chshii 22730 . . . . . . . . . . . 12  |-  D  e.  SH
9997, 98shsvai 22866 . . . . . . . . . . 11  |-  ( ( ( ( proj  h `  B ) `  x
)  e.  B  /\  ( ( proj  h `  D ) `  x
)  e.  D )  ->  ( ( (
proj  h `  B ) `
 x )  +h  ( ( proj  h `  D ) `  x
) )  e.  ( B  +H  D ) )
10095, 96, 99syl2anc 643 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  e.  ( B  +H  D ) )
10155pjcli 22919 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( proj  h `  G
) `  x )  e.  G )
10297, 98shscli 22819 . . . . . . . . . . 11  |-  ( B  +H  D )  e.  SH
10355chshii 22730 . . . . . . . . . . 11  |-  G  e.  SH
104102, 103shsvai 22866 . . . . . . . . . 10  |-  ( ( ( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  e.  ( B  +H  D )  /\  ( ( proj  h `  G ) `  x
)  e.  G )  ->  ( ( ( ( proj  h `  B
) `  x )  +h  ( ( proj  h `  D ) `  x
) )  +h  (
( proj  h `  G
) `  x )
)  e.  ( ( B  +H  D )  +H  G ) )
105100, 101, 104syl2anc 643 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
( ( ( proj 
h `  B ) `  x )  +h  (
( proj  h `  D
) `  x )
)  +h  ( (
proj  h `  G ) `
 x ) )  e.  ( ( B  +H  D )  +H  G ) )
10611, 105syl 16 . . . . . . . 8  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
( ( proj  h `  B ) `  x
)  +h  ( (
proj  h `  D ) `
 x ) )  +h  ( ( proj 
h `  G ) `  x ) )  e.  ( ( B  +H  D )  +H  G
) )
10794, 106eqeltrd 2510 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  ->  ( 2  .h  x )  e.  ( ( B  +H  D )  +H  G
) )
108102, 103shscli 22819 . . . . . . . 8  |-  ( ( B  +H  D )  +H  G )  e.  SH
109 shmulcl 22720 . . . . . . . 8  |-  ( ( ( ( B  +H  D )  +H  G
)  e.  SH  /\  ( 1  /  2
)  e.  CC  /\  ( 2  .h  x
)  e.  ( ( B  +H  D )  +H  G ) )  ->  ( ( 1  /  2 )  .h  ( 2  .h  x
) )  e.  ( ( B  +H  D
)  +H  G ) )
110108, 18, 109mp3an12 1269 . . . . . . 7  |-  ( ( 2  .h  x )  e.  ( ( B  +H  D )  +H  G )  ->  (
( 1  /  2
)  .h  ( 2  .h  x ) )  e.  ( ( B  +H  D )  +H  G ) )
111107, 110syl 16 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  ->  ( (
1  /  2 )  .h  ( 2  .h  x ) )  e.  ( ( B  +H  D )  +H  G
) )
11223, 111eqeltrd 2510 . . . . 5  |-  ( x  e.  ( X  i^i  Y )  ->  x  e.  ( ( B  +H  D )  +H  G
) )
113112ssriv 3352 . . . 4  |-  ( X  i^i  Y )  C_  ( ( B  +H  D )  +H  G
)
11433, 37chsleji 22960 . . . . 5  |-  ( B  +H  D )  C_  ( B  vH  D )
11533, 37chjcli 22959 . . . . . . 7  |-  ( B  vH  D )  e. 
CH
116115chshii 22730 . . . . . 6  |-  ( B  vH  D )  e.  SH
117102, 116, 103shlessi 22879 . . . . 5  |-  ( ( B  +H  D ) 
C_  ( B  vH  D )  ->  (
( B  +H  D
)  +H  G ) 
C_  ( ( B  vH  D )  +H  G ) )
118114, 117ax-mp 8 . . . 4  |-  ( ( B  +H  D )  +H  G )  C_  ( ( B  vH  D )  +H  G
)
119113, 118sstri 3357 . . 3  |-  ( X  i^i  Y )  C_  ( ( B  vH  D )  +H  G
)
120115, 55chsleji 22960 . . 3  |-  ( ( B  vH  D )  +H  G )  C_  ( ( B  vH  D )  vH  G
)
121119, 120sstri 3357 . 2  |-  ( X  i^i  Y )  C_  ( ( B  vH  D )  vH  G
)
122 mayete3.z . 2  |-  Z  =  ( ( B  vH  D )  vH  G
)
123121, 122sseqtr4i 3381 1  |-  ( X  i^i  Y )  C_  Z
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599    i^i cin 3319    C_ wss 3320   ` cfv 5454  (class class class)co 6081   CCcc 8988   0cc0 8990   1c1 8991    x. cmul 8995    / cdiv 9677   2c2 10049   ~Hchil 22422    +h cva 22423    .h csm 22424    -h cmv 22428   SHcsh 22431   CHcch 22432   _|_cort 22433    +H cph 22434    vH chj 22436   proj 
hcpjh 22440
This theorem is referenced by:  mayetes3i  23232
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070  ax-hilex 22502  ax-hfvadd 22503  ax-hvcom 22504  ax-hvass 22505  ax-hv0cl 22506  ax-hvaddid 22507  ax-hfvmul 22508  ax-hvmulid 22509  ax-hvmulass 22510  ax-hvdistr1 22511  ax-hvdistr2 22512  ax-hvmul0 22513  ax-hfi 22581  ax-his1 22584  ax-his2 22585  ax-his3 22586  ax-his4 22587  ax-hcompl 22704
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-rlim 12283  df-sum 12480  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-cn 17291  df-cnp 17292  df-lm 17293  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cfil 19208  df-cau 19209  df-cmet 19210  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782  df-ablo 21870  df-subgo 21890  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-0v 22077  df-vs 22078  df-nmcv 22079  df-ims 22080  df-dip 22197  df-ssp 22221  df-ph 22314  df-cbn 22365  df-hnorm 22471  df-hba 22472  df-hvsub 22474  df-hlim 22475  df-hcau 22476  df-sh 22709  df-ch 22724  df-oc 22754  df-ch0 22755  df-shs 22810  df-chj 22812  df-pjh 22897
  Copyright terms: Public domain W3C validator