HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Unicode version

Theorem mayetes3i 22269
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a  |-  A  e. 
CH
mayetes3.b  |-  B  e. 
CH
mayetes3.c  |-  C  e. 
CH
mayetes3.d  |-  D  e. 
CH
mayetes3.f  |-  F  e. 
CH
mayetes3.g  |-  G  e. 
CH
mayetes3.r  |-  R  e. 
CH
mayetes3.ac  |-  A  C_  ( _|_ `  C )
mayetes3.af  |-  A  C_  ( _|_ `  F )
mayetes3.cf  |-  C  C_  ( _|_ `  F )
mayetes3.ab  |-  A  C_  ( _|_ `  B )
mayetes3.cd  |-  C  C_  ( _|_ `  D )
mayetes3.fg  |-  F  C_  ( _|_ `  G )
mayetes3.rx  |-  R  C_  ( _|_ `  X )
mayetes3.x  |-  X  =  ( ( A  vH  C )  vH  F
)
mayetes3.y  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
mayetes3.z  |-  Z  =  ( ( B  vH  D )  vH  G
)
Assertion
Ref Expression
mayetes3i  |-  ( ( X  vH  R )  i^i  Y )  C_  ( Z  vH  R )

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9  |-  A  e. 
CH
2 mayetes3.c . . . . . . . . 9  |-  C  e. 
CH
31, 2chjcli 21996 . . . . . . . 8  |-  ( A  vH  C )  e. 
CH
4 mayetes3.f . . . . . . . 8  |-  F  e. 
CH
53, 4chjcli 21996 . . . . . . 7  |-  ( ( A  vH  C )  vH  F )  e. 
CH
6 mayetes3.r . . . . . . 7  |-  R  e. 
CH
75, 6chjcomi 22007 . . . . . 6  |-  ( ( ( A  vH  C
)  vH  F )  vH  R )  =  ( R  vH  ( ( A  vH  C )  vH  F ) )
87eqimssi 3207 . . . . 5  |-  ( ( ( A  vH  C
)  vH  F )  vH  R )  C_  ( R  vH  ( ( A  vH  C )  vH  F ) )
9 mayetes3.b . . . . . . . . . . 11  |-  B  e. 
CH
101, 9chjcli 21996 . . . . . . . . . 10  |-  ( A  vH  B )  e. 
CH
1110, 6chub1i 22008 . . . . . . . . 9  |-  ( A  vH  B )  C_  ( ( A  vH  B )  vH  R
)
121, 9, 6chjassi 22025 . . . . . . . . 9  |-  ( ( A  vH  B )  vH  R )  =  ( A  vH  ( B  vH  R ) )
1311, 12sseqtri 3185 . . . . . . . 8  |-  ( A  vH  B )  C_  ( A  vH  ( B  vH  R ) )
149, 6chjcli 21996 . . . . . . . . . 10  |-  ( B  vH  R )  e. 
CH
151, 14chjcli 21996 . . . . . . . . 9  |-  ( A  vH  ( B  vH  R ) )  e. 
CH
1615, 6chub2i 22009 . . . . . . . 8  |-  ( A  vH  ( B  vH  R ) )  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )
1713, 16sstri 3163 . . . . . . 7  |-  ( A  vH  B )  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )
18 mayetes3.d . . . . . . . . . . 11  |-  D  e. 
CH
192, 18chjcli 21996 . . . . . . . . . 10  |-  ( C  vH  D )  e. 
CH
2019, 6chub1i 22008 . . . . . . . . 9  |-  ( C  vH  D )  C_  ( ( C  vH  D )  vH  R
)
212, 18, 6chjassi 22025 . . . . . . . . 9  |-  ( ( C  vH  D )  vH  R )  =  ( C  vH  ( D  vH  R ) )
2220, 21sseqtri 3185 . . . . . . . 8  |-  ( C  vH  D )  C_  ( C  vH  ( D  vH  R ) )
2318, 6chjcli 21996 . . . . . . . . . 10  |-  ( D  vH  R )  e. 
CH
242, 23chjcli 21996 . . . . . . . . 9  |-  ( C  vH  ( D  vH  R ) )  e. 
CH
2524, 6chub2i 22009 . . . . . . . 8  |-  ( C  vH  ( D  vH  R ) )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) )
2622, 25sstri 3163 . . . . . . 7  |-  ( C  vH  D )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) )
27 ss2in 3371 . . . . . . 7  |-  ( ( ( A  vH  B
)  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )  /\  ( C  vH  D )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  ->  ( ( A  vH  B )  i^i  ( C  vH  D
) )  C_  (
( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) ) )
2817, 26, 27mp2an 656 . . . . . 6  |-  ( ( A  vH  B )  i^i  ( C  vH  D ) )  C_  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )
29 mayetes3.g . . . . . . . . . 10  |-  G  e. 
CH
304, 29chjcli 21996 . . . . . . . . 9  |-  ( F  vH  G )  e. 
CH
3130, 6chub1i 22008 . . . . . . . 8  |-  ( F  vH  G )  C_  ( ( F  vH  G )  vH  R
)
324, 29, 6chjassi 22025 . . . . . . . 8  |-  ( ( F  vH  G )  vH  R )  =  ( F  vH  ( G  vH  R ) )
3331, 32sseqtri 3185 . . . . . . 7  |-  ( F  vH  G )  C_  ( F  vH  ( G  vH  R ) )
3429, 6chjcli 21996 . . . . . . . . 9  |-  ( G  vH  R )  e. 
CH
354, 34chjcli 21996 . . . . . . . 8  |-  ( F  vH  ( G  vH  R ) )  e. 
CH
3635, 6chub2i 22009 . . . . . . 7  |-  ( F  vH  ( G  vH  R ) )  C_  ( R  vH  ( F  vH  ( G  vH  R ) ) )
3733, 36sstri 3163 . . . . . 6  |-  ( F  vH  G )  C_  ( R  vH  ( F  vH  ( G  vH  R ) ) )
38 ss2in 3371 . . . . . 6  |-  ( ( ( ( A  vH  B )  i^i  ( C  vH  D ) ) 
C_  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  /\  ( F  vH  G ) 
C_  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )  ->  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) )  C_  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
3928, 37, 38mp2an 656 . . . . 5  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( F  vH  G
) )  C_  (
( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
40 ss2in 3371 . . . . 5  |-  ( ( ( ( ( A  vH  C )  vH  F )  vH  R
)  C_  ( R  vH  ( ( A  vH  C )  vH  F
) )  /\  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) )  C_  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )  ->  (
( ( ( A  vH  C )  vH  F )  vH  R
)  i^i  ( (
( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( F  vH  G
) ) )  C_  ( ( R  vH  ( ( A  vH  C )  vH  F
) )  i^i  (
( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) ) )
418, 39, 40mp2an 656 . . . 4  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
4215, 24chincli 21999 . . . . . . 7  |-  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  e.  CH
4342, 35chincli 21999 . . . . . 6  |-  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )  e.  CH
44 mayetes3.x . . . . . . . . . . 11  |-  X  =  ( ( A  vH  C )  vH  F
)
4544, 5eqeltri 2328 . . . . . . . . . 10  |-  X  e. 
CH
4645choccli 21846 . . . . . . . . 9  |-  ( _|_ `  X )  e.  CH
47 mayetes3.rx . . . . . . . . 9  |-  R  C_  ( _|_ `  X )
486, 46, 47lecmii 22142 . . . . . . . 8  |-  R  C_H  ( _|_ `  X )
496, 45cmcm2i 22132 . . . . . . . 8  |-  ( R  C_H  X  <->  R  C_H  ( _|_ `  X ) )
5048, 49mpbir 202 . . . . . . 7  |-  R  C_H  X
5150, 44breqtri 4020 . . . . . 6  |-  R  C_H  ( ( A  vH  C )  vH  F
)
526, 9chub2i 22009 . . . . . . . . . 10  |-  R  C_  ( B  vH  R )
5314, 1chub2i 22009 . . . . . . . . . 10  |-  ( B  vH  R )  C_  ( A  vH  ( B  vH  R ) )
5452, 53sstri 3163 . . . . . . . . 9  |-  R  C_  ( A  vH  ( B  vH  R ) )
556, 15, 54lecmii 22142 . . . . . . . 8  |-  R  C_H  ( A  vH  ( B  vH  R ) )
566, 18chub2i 22009 . . . . . . . . . 10  |-  R  C_  ( D  vH  R )
5723, 2chub2i 22009 . . . . . . . . . 10  |-  ( D  vH  R )  C_  ( C  vH  ( D  vH  R ) )
5856, 57sstri 3163 . . . . . . . . 9  |-  R  C_  ( C  vH  ( D  vH  R ) )
596, 24, 58lecmii 22142 . . . . . . . 8  |-  R  C_H  ( C  vH  ( D  vH  R ) )
606, 15, 24, 55, 59cm2mi 22165 . . . . . . 7  |-  R  C_H  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )
616, 29chub2i 22009 . . . . . . . . 9  |-  R  C_  ( G  vH  R )
6234, 4chub2i 22009 . . . . . . . . 9  |-  ( G  vH  R )  C_  ( F  vH  ( G  vH  R ) )
6361, 62sstri 3163 . . . . . . . 8  |-  R  C_  ( F  vH  ( G  vH  R ) )
646, 35, 63lecmii 22142 . . . . . . 7  |-  R  C_H  ( F  vH  ( G  vH  R ) )
656, 42, 35, 60, 64cm2mi 22165 . . . . . 6  |-  R  C_H  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )
666, 5, 43, 51, 65fh3i 22162 . . . . 5  |-  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( ( R  vH  (
( A  vH  C
)  vH  F )
)  i^i  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
676, 42, 35, 60, 64fh3i 22162 . . . . . . 7  |-  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
686, 15, 24, 55, 59fh3i 22162 . . . . . . . 8  |-  ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  =  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )
6968ineq1i 3341 . . . . . . 7  |-  ( ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
7067, 69eqtri 2278 . . . . . 6  |-  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
7170ineq2i 3342 . . . . 5  |-  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( ( R  vH  (
( A  vH  C
)  vH  F )
)  i^i  ( (
( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
7266, 71eqtr2i 2279 . . . 4  |-  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  (
( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
7341, 72sseqtri 3185 . . 3  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  (
( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
749, 18chjcli 21996 . . . . . 6  |-  ( B  vH  D )  e. 
CH
7574, 29chjcli 21996 . . . . 5  |-  ( ( B  vH  D )  vH  G )  e. 
CH
766, 75chub2i 22009 . . . 4  |-  R  C_  ( ( ( B  vH  D )  vH  G )  vH  R
)
77 mayetes3.ac . . . . 5  |-  A  C_  ( _|_ `  C )
78 mayetes3.af . . . . 5  |-  A  C_  ( _|_ `  F )
79 mayetes3.cf . . . . 5  |-  C  C_  ( _|_ `  F )
80 mayetes3.ab . . . . . . 7  |-  A  C_  ( _|_ `  B )
811, 2chub1i 22008 . . . . . . . . . . 11  |-  A  C_  ( A  vH  C )
823, 4chub1i 22008 . . . . . . . . . . . 12  |-  ( A  vH  C )  C_  ( ( A  vH  C )  vH  F
)
8382, 44sseqtr4i 3186 . . . . . . . . . . 11  |-  ( A  vH  C )  C_  X
8481, 83sstri 3163 . . . . . . . . . 10  |-  A  C_  X
851, 45chsscon3i 22000 . . . . . . . . . 10  |-  ( A 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  A ) )
8684, 85mpbi 201 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  A )
8747, 86sstri 3163 . . . . . . . 8  |-  R  C_  ( _|_ `  A )
886, 1chsscon2i 22002 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  A
)  <->  A  C_  ( _|_ `  R ) )
8987, 88mpbi 201 . . . . . . 7  |-  A  C_  ( _|_ `  R )
9080, 89ssini 3367 . . . . . 6  |-  A  C_  ( ( _|_ `  B
)  i^i  ( _|_ `  R ) )
919, 6chdmj1i 22020 . . . . . 6  |-  ( _|_ `  ( B  vH  R
) )  =  ( ( _|_ `  B
)  i^i  ( _|_ `  R ) )
9290, 91sseqtr4i 3186 . . . . 5  |-  A  C_  ( _|_ `  ( B  vH  R ) )
93 mayetes3.cd . . . . . . 7  |-  C  C_  ( _|_ `  D )
942, 1chub2i 22009 . . . . . . . . . . 11  |-  C  C_  ( A  vH  C )
9594, 83sstri 3163 . . . . . . . . . 10  |-  C  C_  X
962, 45chsscon3i 22000 . . . . . . . . . 10  |-  ( C 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  C ) )
9795, 96mpbi 201 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  C )
9847, 97sstri 3163 . . . . . . . 8  |-  R  C_  ( _|_ `  C )
996, 2chsscon2i 22002 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  C
)  <->  C  C_  ( _|_ `  R ) )
10098, 99mpbi 201 . . . . . . 7  |-  C  C_  ( _|_ `  R )
10193, 100ssini 3367 . . . . . 6  |-  C  C_  ( ( _|_ `  D
)  i^i  ( _|_ `  R ) )
10218, 6chdmj1i 22020 . . . . . 6  |-  ( _|_ `  ( D  vH  R
) )  =  ( ( _|_ `  D
)  i^i  ( _|_ `  R ) )
103101, 102sseqtr4i 3186 . . . . 5  |-  C  C_  ( _|_ `  ( D  vH  R ) )
104 mayetes3.fg . . . . . . 7  |-  F  C_  ( _|_ `  G )
1054, 3chub2i 22009 . . . . . . . . . . 11  |-  F  C_  ( ( A  vH  C )  vH  F
)
106105, 44sseqtr4i 3186 . . . . . . . . . 10  |-  F  C_  X
1074, 45chsscon3i 22000 . . . . . . . . . 10  |-  ( F 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  F ) )
108106, 107mpbi 201 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  F )
10947, 108sstri 3163 . . . . . . . 8  |-  R  C_  ( _|_ `  F )
1106, 4chsscon2i 22002 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  F
)  <->  F  C_  ( _|_ `  R ) )
111109, 110mpbi 201 . . . . . . 7  |-  F  C_  ( _|_ `  R )
112104, 111ssini 3367 . . . . . 6  |-  F  C_  ( ( _|_ `  G
)  i^i  ( _|_ `  R ) )
11329, 6chdmj1i 22020 . . . . . 6  |-  ( _|_ `  ( G  vH  R
) )  =  ( ( _|_ `  G
)  i^i  ( _|_ `  R ) )
114112, 113sseqtr4i 3186 . . . . 5  |-  F  C_  ( _|_ `  ( G  vH  R ) )
115 eqid 2258 . . . . 5  |-  ( ( A  vH  C )  vH  F )  =  ( ( A  vH  C )  vH  F
)
116 eqid 2258 . . . . 5  |-  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )  =  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )
11774, 29, 6chjjdiri 22063 . . . . . 6  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  =  ( ( ( B  vH  D )  vH  R
)  vH  ( G  vH  R ) )
1189, 18, 6chjjdiri 22063 . . . . . . 7  |-  ( ( B  vH  D )  vH  R )  =  ( ( B  vH  R )  vH  ( D  vH  R ) )
119118oveq1i 5802 . . . . . 6  |-  ( ( ( B  vH  D
)  vH  R )  vH  ( G  vH  R
) )  =  ( ( ( B  vH  R )  vH  ( D  vH  R ) )  vH  ( G  vH  R ) )
120117, 119eqtri 2278 . . . . 5  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  =  ( ( ( B  vH  R )  vH  ( D  vH  R ) )  vH  ( G  vH  R ) )
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 22267 . . . 4  |-  ( ( ( A  vH  C
)  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R )
1225, 43chincli 21999 . . . . 5  |-  ( ( ( A  vH  C
)  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  e.  CH
12375, 6chjcli 21996 . . . . 5  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  e.  CH
1246, 122, 123chlubii 22011 . . . 4  |-  ( ( R  C_  ( (
( B  vH  D
)  vH  G )  vH  R )  /\  (
( ( A  vH  C )  vH  F
)  i^i  ( (
( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R ) )  -> 
( R  vH  (
( ( A  vH  C )  vH  F
)  i^i  ( (
( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  C_  (
( ( B  vH  D )  vH  G
)  vH  R )
)
12576, 121, 124mp2an 656 . . 3  |-  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  C_  (
( ( B  vH  D )  vH  G
)  vH  R )
12673, 125sstri 3163 . 2  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R )
12744oveq1i 5802 . . 3  |-  ( X  vH  R )  =  ( ( ( A  vH  C )  vH  F )  vH  R
)
128 mayetes3.y . . 3  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
129127, 128ineq12i 3343 . 2  |-  ( ( X  vH  R )  i^i  Y )  =  ( ( ( ( A  vH  C )  vH  F )  vH  R )  i^i  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) ) )
130 mayetes3.z . . 3  |-  Z  =  ( ( B  vH  D )  vH  G
)
131130oveq1i 5802 . 2  |-  ( Z  vH  R )  =  ( ( ( B  vH  D )  vH  G )  vH  R
)
132126, 129, 1313sstr4i 3192 1  |-  ( ( X  vH  R )  i^i  Y )  C_  ( Z  vH  R )
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621    i^i cin 3126    C_ wss 3127   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   CHcch 21469   _|_cort 21470    vH chj 21473    C_H ccm 21476
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785  ax-hilex 21539  ax-hfvadd 21540  ax-hvcom 21541  ax-hvass 21542  ax-hv0cl 21543  ax-hvaddid 21544  ax-hfvmul 21545  ax-hvmulid 21546  ax-hvmulass 21547  ax-hvdistr1 21548  ax-hvdistr2 21549  ax-hvmul0 21550  ax-hfi 21618  ax-his1 21621  ax-his2 21622  ax-his3 21623  ax-his4 21624  ax-hcompl 21741
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-seq 11013  df-exp 11071  df-hash 11304  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-clim 11927  df-rlim 11928  df-sum 12124  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-cn 16919  df-cnp 16920  df-lm 16921  df-haus 17005  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cfil 18643  df-cau 18644  df-cmet 18645  df-grpo 20818  df-gid 20819  df-ginv 20820  df-gdiv 20821  df-ablo 20909  df-subgo 20929  df-vc 21062  df-nv 21108  df-va 21111  df-ba 21112  df-sm 21113  df-0v 21114  df-vs 21115  df-nmcv 21116  df-ims 21117  df-dip 21234  df-ssp 21258  df-ph 21351  df-cbn 21402  df-hnorm 21508  df-hba 21509  df-hvsub 21511  df-hlim 21512  df-hcau 21513  df-sh 21746  df-ch 21761  df-oc 21791  df-ch0 21792  df-shs 21847  df-chj 21849  df-pjh 21934  df-cm 22122
  Copyright terms: Public domain W3C validator