MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flim Structured version   Unicode version

Theorem mbfi1flim 19615
Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1  |-  ( ph  ->  F  e. MblFn )
mbfi1flim.2  |-  ( ph  ->  F : A --> RR )
Assertion
Ref Expression
mbfi1flim  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, n, x, A    g, F, n, x    ph, g, n, x

Proof of Theorem mbfi1flim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iftrue 3745 . . . . . . . 8  |-  ( y  e.  A  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  =  ( F `
 y ) )
21mpteq2ia 4291 . . . . . . 7  |-  ( y  e.  A  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) )  =  ( y  e.  A  |->  ( F `
 y ) )
3 mbfi1flim.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> RR )
43feqmptd 5779 . . . . . . . 8  |-  ( ph  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
5 mbfi1flim.1 . . . . . . . 8  |-  ( ph  ->  F  e. MblFn )
64, 5eqeltrrd 2511 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( F `  y
) )  e. MblFn )
72, 6syl5eqel 2520 . . . . . 6  |-  ( ph  ->  ( y  e.  A  |->  if ( y  e.  A ,  ( F `
 y ) ,  0 ) )  e. MblFn
)
8 fvex 5742 . . . . . . . 8  |-  ( F `
 y )  e. 
_V
9 c0ex 9085 . . . . . . . 8  |-  0  e.  _V
108, 9ifex 3797 . . . . . . 7  |-  if ( y  e.  A , 
( F `  y
) ,  0 )  e.  _V
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  e.  _V )
127, 11mbfdm2 19530 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
13 mblss 19427 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1412, 13syl 16 . . . 4  |-  ( ph  ->  A  C_  RR )
15 rembl 19435 . . . . 5  |-  RR  e.  dom  vol
1615a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
17 eldifn 3470 . . . . . 6  |-  ( y  e.  ( RR  \  A )  ->  -.  y  e.  A )
1817adantl 453 . . . . 5  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  -.  y  e.  A )
19 iffalse 3746 . . . . 5  |-  ( -.  y  e.  A  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  =  0 )
2018, 19syl 16 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  if (
y  e.  A , 
( F `  y
) ,  0 )  =  0 )
2114, 16, 11, 20, 7mbfss 19538 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) )  e. MblFn )
223ffvelrnda 5870 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  RR )
23 0re 9091 . . . . . . 7  |-  0  e.  RR
2423a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  y  e.  A )  ->  0  e.  RR )
2522, 24ifclda 3766 . . . . 5  |-  ( ph  ->  if ( y  e.  A ,  ( F `
 y ) ,  0 )  e.  RR )
2625adantr 452 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  if ( y  e.  A , 
( F `  y
) ,  0 )  e.  RR )
27 eqid 2436 . . . 4  |-  ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) )  =  ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) )
2826, 27fmptd 5893 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) : RR --> RR )
2921, 28mbfi1flimlem 19614 . 2  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) ) )
30 ssralv 3407 . . . . . 6  |-  ( A 
C_  RR  ->  ( A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) ) `  x )  ->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) ) )
3114, 30syl 16 . . . . 5  |-  ( ph  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  ->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) ) )
3214sselda 3348 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
33 eleq1 2496 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
34 fveq2 5728 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
35 eqidd 2437 . . . . . . . . . . 11  |-  ( y  =  x  ->  0  =  0 )
3633, 34, 35ifbieq12d 3761 . . . . . . . . . 10  |-  ( y  =  x  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  =  if ( x  e.  A , 
( F `  x
) ,  0 ) )
37 fvex 5742 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
3837, 9ifex 3797 . . . . . . . . . 10  |-  if ( x  e.  A , 
( F `  x
) ,  0 )  e.  _V
3936, 27, 38fvmpt 5806 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  =  if ( x  e.  A , 
( F `  x
) ,  0 ) )
4032, 39syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  =  if ( x  e.  A , 
( F `  x
) ,  0 ) )
41 iftrue 3745 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
4241adantl 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
4340, 42eqtrd 2468 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  =  ( F `
 x ) )
4443breq2d 4224 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  <->  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
4544ralbidva 2721 . . . . 5  |-  ( ph  ->  ( A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  <->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
4631, 45sylibd 206 . . . 4  |-  ( ph  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  ->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
4746anim2d 549 . . 3  |-  ( ph  ->  ( ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) ) `  x ) )  ->  ( g : NN --> dom  S.1  /\  A. x  e.  A  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
4847eximdv 1632 . 2  |-  ( ph  ->  ( E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) )  ->  E. g
( g : NN --> dom  S.1  /\  A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
4929, 48mpd 15 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    \ cdif 3317    C_ wss 3320   ifcif 3739   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   -->wf 5450   ` cfv 5454   RRcr 8989   0cc0 8990   NNcn 10000    ~~> cli 12278   volcvol 19360  MblFncmbf 19506   S.1citg1 19507
This theorem is referenced by:  mbfmullem  19617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-rlim 12283  df-sum 12480  df-rest 13650  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cmp 17450  df-ovol 19361  df-vol 19362  df-mbf 19512  df-itg1 19513  df-0p 19562
  Copyright terms: Public domain W3C validator