MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem5 Unicode version

Theorem mbfi1fseqlem5 19594
Description: Lemma for mbfi1fseq 19596. Verify that  G describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem5  |-  ( (
ph  /\  A  e.  NN )  ->  ( 0 p  o R  <_ 
( G `  A
)  /\  ( G `  A )  o R  <_  ( G `  ( A  +  1
) ) ) )
Distinct variable groups:    x, m, y, F    x, G    m, J    ph, m, x, y    A, m, x, y
Allowed substitution hints:    G( y, m)    J( x, y)

Proof of Theorem mbfi1fseqlem5
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
21adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  e.  NN )  ->  F : RR
--> ( 0 [,)  +oo ) )
32ffvelrnda 5856 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  ( 0 [,)  +oo ) )
4 elrege0 10991 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
53, 4sylib 189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  e.  RR  /\  0  <_  ( F `  x ) ) )
65simpld 446 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
7 2nn 10117 . . . . . . . . . . . . . 14  |-  2  e.  NN
8 nnnn0 10212 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  NN0 )
9 nnexpcl 11377 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
107, 8, 9sylancr 645 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  (
2 ^ A )  e.  NN )
1110ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  NN )
1211nnred 9999 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  RR )
136, 12remulcld 9100 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  x.  ( 2 ^ A ) )  e.  RR )
1411nnnn0d 10258 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  NN0 )
1514nn0ge0d 10261 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( 2 ^ A
) )
16 mulge0 9529 . . . . . . . . . . 11  |-  ( ( ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x ) )  /\  ( ( 2 ^ A )  e.  RR  /\  0  <_  ( 2 ^ A ) ) )  ->  0  <_  ( ( F `  x
)  x.  ( 2 ^ A ) ) )
175, 12, 15, 16syl12anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( ( F `  x )  x.  (
2 ^ A ) ) )
18 flge0nn0 11208 . . . . . . . . . 10  |-  ( ( ( ( F `  x )  x.  (
2 ^ A ) )  e.  RR  /\  0  <_  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  -> 
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  e.  NN0 )
1913, 17, 18syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  e. 
NN0 )
2019nn0red 10259 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  e.  RR )
2119nn0ge0d 10261 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) ) )
2211nngt0d 10027 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <  ( 2 ^ A
) )
23 divge0 9863 . . . . . . . 8  |-  ( ( ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  e.  RR  /\  0  <_  ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) ) )  /\  ( ( 2 ^ A )  e.  RR  /\  0  <  ( 2 ^ A ) ) )  ->  0  <_  ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) ) )
2420, 21, 12, 22, 23syl22anc 1185 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) ) )
25 simpr 448 . . . . . . . . . . . . 13  |-  ( ( m  =  A  /\  y  =  x )  ->  y  =  x )
2625fveq2d 5718 . . . . . . . . . . . 12  |-  ( ( m  =  A  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
27 simpl 444 . . . . . . . . . . . . 13  |-  ( ( m  =  A  /\  y  =  x )  ->  m  =  A )
2827oveq2d 6083 . . . . . . . . . . . 12  |-  ( ( m  =  A  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ A ) )
2926, 28oveq12d 6085 . . . . . . . . . . 11  |-  ( ( m  =  A  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ A ) ) )
3029fveq2d 5718 . . . . . . . . . 10  |-  ( ( m  =  A  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) ) )
3130, 28oveq12d 6085 . . . . . . . . 9  |-  ( ( m  =  A  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) ) )
32 mbfi1fseq.3 . . . . . . . . 9  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
33 ovex 6092 . . . . . . . . 9  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  e. 
_V
3431, 32, 33ovmpt2a 6190 . . . . . . . 8  |-  ( ( A  e.  NN  /\  x  e.  RR )  ->  ( A J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) ) )
3534adantll 695 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A J x )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) ) )
3624, 35breqtrrd 4225 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( A J x ) )
378nn0ge0d 10261 . . . . . . 7  |-  ( A  e.  NN  ->  0  <_  A )
3837ad2antlr 708 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  A )
39 breq2 4203 . . . . . . 7  |-  ( ( A J x )  =  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  -> 
( 0  <_  ( A J x )  <->  0  <_  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ) )
40 breq2 4203 . . . . . . 7  |-  ( A  =  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  -> 
( 0  <_  A  <->  0  <_  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ) )
4139, 40ifboth 3757 . . . . . 6  |-  ( ( 0  <_  ( A J x )  /\  0  <_  A )  -> 
0  <_  if (
( A J x )  <_  A , 
( A J x ) ,  A ) )
4236, 38, 41syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) )
43 0le0 10065 . . . . 5  |-  0  <_  0
44 breq2 4203 . . . . . 6  |-  ( if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  =  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  ->  ( 0  <_  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <->  0  <_  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) ) )
45 breq2 4203 . . . . . 6  |-  ( 0  =  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 )  ->  ( 0  <_ 
0  <->  0  <_  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) ) )
4644, 45ifboth 3757 . . . . 5  |-  ( ( 0  <_  if (
( A J x )  <_  A , 
( A J x ) ,  A )  /\  0  <_  0
)  ->  0  <_  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) )
4742, 43, 46sylancl 644 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) )
4847ralrimiva 2776 . . 3  |-  ( (
ph  /\  A  e.  NN )  ->  A. x  e.  RR  0  <_  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) )
49 0re 9075 . . . . . . 7  |-  0  e.  RR
50 fnconstg 5617 . . . . . . 7  |-  ( 0  e.  RR  ->  ( CC  X.  { 0 } )  Fn  CC )
5149, 50ax-mp 8 . . . . . 6  |-  ( CC 
X.  { 0 } )  Fn  CC
52 df-0p 19545 . . . . . . 7  |-  0 p  =  ( CC  X.  { 0 } )
5352fneq1i 5525 . . . . . 6  |-  ( 0 p  Fn  CC  <->  ( CC  X.  { 0 } )  Fn  CC )
5451, 53mpbir 201 . . . . 5  |-  0 p  Fn  CC
5554a1i 11 . . . 4  |-  ( (
ph  /\  A  e.  NN )  ->  0 p  Fn  CC )
56 mbfi1fseq.1 . . . . . . 7  |-  ( ph  ->  F  e. MblFn )
57 mbfi1fseq.4 . . . . . . 7  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
5856, 1, 32, 57mbfi1fseqlem4 19593 . . . . . 6  |-  ( ph  ->  G : NN --> dom  S.1 )
5958ffvelrnda 5856 . . . . 5  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 A )  e. 
dom  S.1 )
60 i1ff 19551 . . . . 5  |-  ( ( G `  A )  e.  dom  S.1  ->  ( G `  A ) : RR --> RR )
61 ffn 5577 . . . . 5  |-  ( ( G `  A ) : RR --> RR  ->  ( G `  A )  Fn  RR )
6259, 60, 613syl 19 . . . 4  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 A )  Fn  RR )
63 cnex 9055 . . . . 5  |-  CC  e.  _V
6463a1i 11 . . . 4  |-  ( (
ph  /\  A  e.  NN )  ->  CC  e.  _V )
65 reex 9065 . . . . 5  |-  RR  e.  _V
6665a1i 11 . . . 4  |-  ( (
ph  /\  A  e.  NN )  ->  RR  e.  _V )
67 ax-resscn 9031 . . . . 5  |-  RR  C_  CC
68 sseqin2 3547 . . . . 5  |-  ( RR  C_  CC  <->  ( CC  i^i  RR )  =  RR )
6967, 68mpbi 200 . . . 4  |-  ( CC 
i^i  RR )  =  RR
70 0pval 19546 . . . . 5  |-  ( x  e.  CC  ->  (
0 p `  x
)  =  0 )
7170adantl 453 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  CC )  ->  (
0 p `  x
)  =  0 )
7256, 1, 32, 57mbfi1fseqlem2 19591 . . . . . . 7  |-  ( A  e.  NN  ->  ( G `  A )  =  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) )
7372fveq1d 5716 . . . . . 6  |-  ( A  e.  NN  ->  (
( G `  A
) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) ) `  x
) )
7473ad2antlr 708 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( G `  A
) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) ) `  x
) )
75 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  x  e.  RR )
76 pnfxr 10697 . . . . . . . . . . . . . . . . 17  |-  +oo  e.  RR*
77 icossre 10975 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
7849, 76, 77mp2an 654 . . . . . . . . . . . . . . . 16  |-  ( 0 [,)  +oo )  C_  RR
79 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  NN  /\  y  e.  RR )  ->  y  e.  RR )
80 ffvelrn 5854 . . . . . . . . . . . . . . . . 17  |-  ( ( F : RR --> ( 0 [,)  +oo )  /\  y  e.  RR )  ->  ( F `  y )  e.  ( 0 [,)  +oo ) )
811, 79, 80syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( F `  y
)  e.  ( 0 [,)  +oo ) )
8278, 81sseldi 3333 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( F `  y
)  e.  RR )
83 nnnn0 10212 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN  ->  m  e.  NN0 )
84 nnexpcl 11377 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  NN  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
857, 83, 84sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  (
2 ^ m )  e.  NN )
8685ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  NN )
8786nnred 9999 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  RR )
8882, 87remulcld 9100 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( F `  y )  x.  (
2 ^ m ) )  e.  RR )
89 reflcl 11188 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  x.  ( 2 ^ m ) )  e.  RR  ->  ( |_ `  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  e.  RR )
9088, 89syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  e.  RR )
9190, 86nndivred 10032 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  e.  RR )
9291ralrimivva 2785 . . . . . . . . . . 11  |-  ( ph  ->  A. m  e.  NN  A. y  e.  RR  (
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  /  ( 2 ^ m ) )  e.  RR )
9332fmpt2 6404 . . . . . . . . . . 11  |-  ( A. m  e.  NN  A. y  e.  RR  ( ( |_
`  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  / 
( 2 ^ m
) )  e.  RR  <->  J : ( NN  X.  RR ) --> RR )
9492, 93sylib 189 . . . . . . . . . 10  |-  ( ph  ->  J : ( NN 
X.  RR ) --> RR )
95 fovrn 6202 . . . . . . . . . 10  |-  ( ( J : ( NN 
X.  RR ) --> RR 
/\  A  e.  NN  /\  x  e.  RR )  ->  ( A J x )  e.  RR )
9694, 95syl3an1 1217 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  NN  /\  x  e.  RR )  ->  ( A J x )  e.  RR )
97963expa 1153 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A J x )  e.  RR )
98 nnre 9991 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
9998ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  e.  RR )
100 ifcl 3762 . . . . . . . 8  |-  ( ( ( A J x )  e.  RR  /\  A  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  e.  RR )
10197, 99, 100syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  e.  RR )
102 ifcl 3762 . . . . . . 7  |-  ( ( if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  e.  RR  /\  0  e.  RR )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 )  e.  RR )
103101, 49, 102sylancl 644 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  e.  RR )
104 eqid 2430 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) )
105104fvmpt2 5798 . . . . . 6  |-  ( ( x  e.  RR  /\  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 )  e.  RR )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) )
10675, 103, 105syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) )
10774, 106eqtrd 2462 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( G `  A
) `  x )  =  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) )
10855, 62, 64, 66, 69, 71, 107ofrfval 6299 . . 3  |-  ( (
ph  /\  A  e.  NN )  ->  ( 0 p  o R  <_ 
( G `  A
)  <->  A. x  e.  RR  0  <_  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) )
10948, 108mpbird 224 . 2  |-  ( (
ph  /\  A  e.  NN )  ->  0 p  o R  <_  ( G `  A )
)
11056, 1, 32mbfi1fseqlem1 19590 . . . . . . . . . . . . 13  |-  ( ph  ->  J : ( NN 
X.  RR ) --> ( 0 [,)  +oo )
)
111110ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  J : ( NN  X.  RR ) --> ( 0 [,) 
+oo ) )
112 peano2nn 9996 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
113112ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  +  1 )  e.  NN )
114111, 113, 75fovrnd 6204 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( A  +  1 ) J x )  e.  ( 0 [,) 
+oo ) )
115 elrege0 10991 . . . . . . . . . . 11  |-  ( ( ( A  +  1 ) J x )  e.  ( 0 [,) 
+oo )  <->  ( (
( A  +  1 ) J x )  e.  RR  /\  0  <_  ( ( A  + 
1 ) J x ) ) )
116114, 115sylib 189 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( A  + 
1 ) J x )  e.  RR  /\  0  <_  ( ( A  +  1 ) J x ) ) )
117116simpld 446 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( A  +  1 ) J x )  e.  RR )
118 min1 10760 . . . . . . . . . 10  |-  ( ( ( A J x )  e.  RR  /\  A  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_  ( A J x ) )
11997, 99, 118syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  ( A J x ) )
120 2cn 10054 . . . . . . . . . . . . . . 15  |-  2  e.  CC
1218ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  e.  NN0 )
122 expp1 11371 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  A  e.  NN0 )  -> 
( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
123120, 121, 122sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
124123oveq2d 6083 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) )  x.  ( 2 ^ ( A  + 
1 ) ) )  =  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  x.  ( ( 2 ^ A )  x.  2 ) ) )
12535, 97eqeltrrd 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  e.  RR )
126125recnd 9098 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  e.  CC )
12712recnd 9098 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  CC )
128120a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  2  e.  CC )
129126, 127, 128mulassd 9095 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  / 
( 2 ^ A
) )  x.  (
2 ^ A ) )  x.  2 )  =  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  x.  ( ( 2 ^ A )  x.  2 ) ) )
13020recnd 9098 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  e.  CC )
13111nnne0d 10028 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  =/=  0 )
132130, 127, 131divcan1d 9775 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) )  x.  ( 2 ^ A ) )  =  ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) ) )
133132oveq1d 6082 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  / 
( 2 ^ A
) )  x.  (
2 ^ A ) )  x.  2 )  =  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  x.  2 ) )
134124, 129, 1333eqtr2d 2468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) )  x.  ( 2 ^ ( A  + 
1 ) ) )  =  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  x.  2 ) )
135 flle 11191 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  x
)  x.  ( 2 ^ A ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ A ) ) )
13613, 135syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ A ) ) )
137 2re 10053 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
138 2pos 10066 . . . . . . . . . . . . . . . . . 18  |-  0  <  2
139137, 138pm3.2i 442 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  RR  /\  0  <  2 )
140139a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2  e.  RR  /\  0  <  2 ) )
141 lemul1 9846 . . . . . . . . . . . . . . . 16  |-  ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  e.  RR  /\  ( ( F `  x )  x.  (
2 ^ A ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ A ) )  <->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  x.  2 )  <_  (
( ( F `  x )  x.  (
2 ^ A ) )  x.  2 ) ) )
14220, 13, 140, 141syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  <_  ( ( F `  x )  x.  ( 2 ^ A
) )  <->  ( ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  x.  2 )  <_  (
( ( F `  x )  x.  (
2 ^ A ) )  x.  2 ) ) )
143136, 142mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  x.  2 )  <_  ( ( ( F `  x )  x.  ( 2 ^ A ) )  x.  2 ) )
144123oveq2d 6083 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) )  =  ( ( F `
 x )  x.  ( ( 2 ^ A )  x.  2 ) ) )
1456recnd 9098 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  CC )
146145, 127, 128mulassd 9095 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( F `  x )  x.  (
2 ^ A ) )  x.  2 )  =  ( ( F `
 x )  x.  ( ( 2 ^ A )  x.  2 ) ) )
147144, 146eqtr4d 2465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) )  =  ( ( ( F `  x )  x.  ( 2 ^ A ) )  x.  2 ) )
148143, 147breqtrrd 4225 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  x.  2 )  <_  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) )
149113nnnn0d 10258 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  +  1 )  e.  NN0 )
150 nnexpcl 11377 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  NN  /\  ( A  +  1
)  e.  NN0 )  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
1517, 149, 150sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ ( A  +  1 ) )  e.  NN )
152151nnred 9999 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ ( A  +  1 ) )  e.  RR )
1536, 152remulcld 9100 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) )  e.  RR )
15413flcld 11190 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  e.  ZZ )
155 2z 10296 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
156 zmulcl 10308 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  e.  ZZ  /\  2  e.  ZZ )  ->  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  x.  2 )  e.  ZZ )
157154, 155, 156sylancl 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  x.  2 )  e.  ZZ )
158 flge 11197 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  x )  x.  (
2 ^ ( A  +  1 ) ) )  e.  RR  /\  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  x.  2 )  e.  ZZ )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  x.  2 )  <_ 
( ( F `  x )  x.  (
2 ^ ( A  +  1 ) ) )  <->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  x.  2 )  <_  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) ) ) )
159153, 157, 158syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  x.  2 )  <_  ( ( F `  x )  x.  ( 2 ^ ( A  +  1 ) ) )  <->  ( ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  x.  2 )  <_  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) ) ) )
160148, 159mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  x.  2 )  <_  ( |_ `  ( ( F `  x )  x.  (
2 ^ ( A  +  1 ) ) ) ) )
161134, 160eqbrtrd 4219 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) )  x.  ( 2 ^ ( A  + 
1 ) ) )  <_  ( |_ `  ( ( F `  x )  x.  (
2 ^ ( A  +  1 ) ) ) ) )
162 reflcl 11188 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  e.  RR )
163153, 162syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  e.  RR )
164151nngt0d 10027 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <  ( 2 ^ ( A  +  1 ) ) )
165 lemuldiv 9873 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) )  e.  RR  /\  ( |_ `  ( ( F `  x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  e.  RR  /\  (
( 2 ^ ( A  +  1 ) )  e.  RR  /\  0  <  ( 2 ^ ( A  +  1 ) ) ) )  ->  ( ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  x.  ( 2 ^ ( A  +  1 ) ) )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) ) )  <->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  / 
( 2 ^ A
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) ) )  /  ( 2 ^ ( A  + 
1 ) ) ) ) )
166125, 163, 152, 164, 165syl112anc 1188 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  / 
( 2 ^ A
) )  x.  (
2 ^ ( A  +  1 ) ) )  <_  ( |_ `  ( ( F `  x )  x.  (
2 ^ ( A  +  1 ) ) ) )  <->  ( ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  / 
( 2 ^ A
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ ( A  + 
1 ) ) ) )  /  ( 2 ^ ( A  + 
1 ) ) ) ) )
167161, 166mpbid 202 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  <_  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  / 
( 2 ^ ( A  +  1 ) ) ) )
168 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  y  =  x )
169168fveq2d 5718 . . . . . . . . . . . . . . 15  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
170 simpl 444 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  m  =  ( A  +  1 ) )
171170oveq2d 6083 . . . . . . . . . . . . . . 15  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ ( A  + 
1 ) ) )
172169, 171oveq12d 6085 . . . . . . . . . . . . . 14  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ ( A  +  1 ) ) ) )
173172fveq2d 5718 . . . . . . . . . . . . 13  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) ) )
174173, 171oveq12d 6085 . . . . . . . . . . . 12  |-  ( ( m  =  ( A  +  1 )  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  /  ( 2 ^ ( A  +  1 ) ) ) )
175 ovex 6092 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  /  ( 2 ^ ( A  +  1 ) ) )  e. 
_V
176174, 32, 175ovmpt2a 6190 . . . . . . . . . . 11  |-  ( ( ( A  +  1 )  e.  NN  /\  x  e.  RR )  ->  ( ( A  + 
1 ) J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  /  ( 2 ^ ( A  +  1 ) ) ) )
177113, 75, 176syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( A  +  1 ) J x )  =  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ ( A  +  1 ) ) ) )  / 
( 2 ^ ( A  +  1 ) ) ) )
178167, 35, 1773brtr4d 4229 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A J x )  <_ 
( ( A  + 
1 ) J x ) )
179101, 97, 117, 119, 178letrd 9211 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  ( ( A  +  1 ) J x ) )
180113nnred 9999 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  +  1 )  e.  RR )
181 min2 10761 . . . . . . . . . 10  |-  ( ( ( A J x )  e.  RR  /\  A  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_  A
)
18297, 99, 181syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  A )
18399lep1d 9926 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  <_  ( A  +  1 ) )
184101, 99, 180, 182, 183letrd 9211 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  ( A  +  1 ) )
185 breq2 4203 . . . . . . . . 9  |-  ( ( ( A  +  1 ) J x )  =  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) )  -> 
( if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_ 
( ( A  + 
1 ) J x )  <->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ) )
186 breq2 4203 . . . . . . . . 9  |-  ( ( A  +  1 )  =  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) )  -> 
( if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_ 
( A  +  1 )  <->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ) )
187185, 186ifboth 3757 . . . . . . . 8  |-  ( ( if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_  (
( A  +  1 ) J x )  /\  if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  <_ 
( A  +  1 ) )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) )
188179, 184, 187syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) )
189188adantr 452 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  x  e.  (
-u A [,] A
) )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) )
190 iftrue 3732 . . . . . . 7  |-  ( x  e.  ( -u A [,] A )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  =  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) )
191190adantl 453 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  x  e.  (
-u A [,] A
) )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  =  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) )
192180renegcld 9448 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  -u ( A  +  1 )  e.  RR )
19399, 180lenegd 9589 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  <_  ( A  + 
1 )  <->  -u ( A  +  1 )  <_  -u A ) )
194183, 193mpbid 202 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  -u ( A  +  1 )  <_  -u A )
195 iccss 10962 . . . . . . . . 9  |-  ( ( ( -u ( A  +  1 )  e.  RR  /\  ( A  +  1 )  e.  RR )  /\  ( -u ( A  +  1 )  <_  -u A  /\  A  <_  ( A  + 
1 ) ) )  ->  ( -u A [,] A )  C_  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) )
196192, 180, 194, 183, 195syl22anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( -u A [,] A ) 
C_  ( -u ( A  +  1 ) [,] ( A  + 
1 ) ) )
197196sselda 3335 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  x  e.  (
-u A [,] A
) )  ->  x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) )
198 iftrue 3732 . . . . . . 7  |-  ( x  e.  ( -u ( A  +  1 ) [,] ( A  + 
1 ) )  ->  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 )  =  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) )
199197, 198syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  x  e.  (
-u A [,] A
) )  ->  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 )  =  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) )
200189, 191, 1993brtr4d 4229 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  x  e.  (
-u A [,] A
) )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  <_  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) )
201 iffalse 3733 . . . . . . 7  |-  ( -.  x  e.  ( -u A [,] A )  ->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 )  =  0 )
202201adantl 453 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  -.  x  e.  ( -u A [,] A ) )  ->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 )  =  0 )
203116simprd 450 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( ( A  + 
1 ) J x ) )
204149nn0ge0d 10261 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( A  +  1 ) )
205 breq2 4203 . . . . . . . . . 10  |-  ( ( ( A  +  1 ) J x )  =  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) )  -> 
( 0  <_  (
( A  +  1 ) J x )  <->  0  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ) )
206 breq2 4203 . . . . . . . . . 10  |-  ( ( A  +  1 )  =  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) )  -> 
( 0  <_  ( A  +  1 )  <->  0  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ) )
207205, 206ifboth 3757 . . . . . . . . 9  |-  ( ( 0  <_  ( ( A  +  1 ) J x )  /\  0  <_  ( A  + 
1 ) )  -> 
0  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) )
208203, 204, 207syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) )
209 breq2 4203 . . . . . . . . 9  |-  ( if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) )  =  if ( x  e.  ( -u ( A  +  1
) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 )  ->  (
0  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) )  <->  0  <_  if (
x  e.  ( -u ( A  +  1
) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) ) )
210 breq2 4203 . . . . . . . . 9  |-  ( 0  =  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  + 
1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 )  ->  ( 0  <_  0  <->  0  <_  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) ) )
211209, 210ifboth 3757 . . . . . . . 8  |-  ( ( 0  <_  if (
( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) )  /\  0  <_  0
)  ->  0  <_  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
212208, 43, 211sylancl 644 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
213212adantr 452 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  -.  x  e.  ( -u A [,] A ) )  -> 
0  <_  if (
x  e.  ( -u ( A  +  1
) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) )
214202, 213eqbrtrd 4219 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  -.  x  e.  ( -u A [,] A ) )  ->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 )  <_  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
215200, 214pm2.61dan 767 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  <_  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) )
216215ralrimiva 2776 . . 3  |-  ( (
ph  /\  A  e.  NN )  ->  A. x  e.  RR  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 )  <_  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  + 
1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
217 ffvelrn 5854 . . . . . 6  |-  ( ( G : NN --> dom  S.1  /\  ( A  +  1 )  e.  NN )  ->  ( G `  ( A  +  1
) )  e.  dom  S.1 )
21858, 112, 217syl2an 464 . . . . 5  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 ( A  + 
1 ) )  e. 
dom  S.1 )
219 i1ff 19551 . . . . 5  |-  ( ( G `  ( A  +  1 ) )  e.  dom  S.1  ->  ( G `  ( A  +  1 ) ) : RR --> RR )
220 ffn 5577 . . . . 5  |-  ( ( G `  ( A  +  1 ) ) : RR --> RR  ->  ( G `  ( A  +  1 ) )  Fn  RR )
221218, 219, 2203syl 19 . . . 4  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 ( A  + 
1 ) )  Fn  RR )
222 inidm 3537 . . . 4  |-  ( RR 
i^i  RR )  =  RR
22356, 1, 32, 57mbfi1fseqlem2 19591 . . . . . . 7  |-  ( ( A  +  1 )  e.  NN  ->  ( G `  ( A  +  1 ) )  =  ( x  e.  RR  |->  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  + 
1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) ) )
224223fveq1d 5716 . . . . . 6  |-  ( ( A  +  1 )  e.  NN  ->  (
( G `  ( A  +  1 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  ( -u ( A  +  1
) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) ) `  x ) )
225113, 224syl 16 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( G `  ( A  +  1 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  ( -u ( A  +  1
) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) ) `  x ) )
226 ifcl 3762 . . . . . . . 8  |-  ( ( ( ( A  + 
1 ) J x )  e.  RR  /\  ( A  +  1
)  e.  RR )  ->  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) )  e.  RR )
227117, 180, 226syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) )  e.  RR )
228 ifcl 3762 . . . . . . 7  |-  ( ( if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) )  e.  RR  /\  0  e.  RR )  ->  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  + 
1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 )  e.  RR )
229227, 49, 228sylancl 644 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 )  e.  RR )
230 eqid 2430 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  ( -u ( A  +  1
) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  + 
1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  + 
1 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
231230fvmpt2 5798 . . . . . 6  |-  ( ( x  e.  RR  /\  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 )  e.  RR )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
23275, 229, 231syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
233225, 232eqtrd 2462 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( G `  ( A  +  1 ) ) `  x )  =  if ( x  e.  ( -u ( A  +  1 ) [,] ( A  + 
1 ) ) ,  if ( ( ( A  +  1 ) J x )  <_ 
( A  +  1 ) ,  ( ( A  +  1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) )
23462, 221, 66, 66, 222, 107, 233ofrfval 6299 . . 3  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( G `  A )  o R  <_  ( G `  ( A  +  1 ) )  <->  A. x  e.  RR  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 )  <_  if ( x  e.  (
-u ( A  + 
1 ) [,] ( A  +  1 ) ) ,  if ( ( ( A  + 
1 ) J x )  <_  ( A  +  1 ) ,  ( ( A  + 
1 ) J x ) ,  ( A  +  1 ) ) ,  0 ) ) )
235216, 234mpbird 224 . 2  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 A )  o R  <_  ( G `  ( A  +  1 ) ) )
236109, 235jca 519 1  |-  ( (
ph  /\  A  e.  NN )  ->  ( 0 p  o R  <_ 
( G `  A
)  /\  ( G `  A )  o R  <_  ( G `  ( A  +  1
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2692   _Vcvv 2943    i^i cin 3306    C_ wss 3307   ifcif 3726   {csn 3801   class class class wbr 4199    e. cmpt 4253    X. cxp 4862   dom cdm 4864    Fn wfn 5435   -->wf 5436   ` cfv 5440  (class class class)co 6067    e. cmpt2 6069    o Rcofr 6290   CCcc 8972   RRcr 8973   0cc0 8974   1c1 8975    + caddc 8977    x. cmul 8979    +oocpnf 9101   RR*cxr 9103    < clt 9104    <_ cle 9105   -ucneg 9276    / cdiv 9661   NNcn 9984   2c2 10033   NN0cn0 10205   ZZcz 10266   [,)cico 10902   [,]cicc 10903   |_cfl 11184   ^cexp 11365  MblFncmbf 19489   S.1citg1 19490   0 pc0p 19544
This theorem is referenced by:  mbfi1fseqlem6  19595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-inf2 7580  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051  ax-pre-sup 9052
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-se 4529  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-isom 5449  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-of 6291  df-ofr 6292  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-2o 6711  df-oadd 6714  df-er 6891  df-map 7006  df-pm 7007  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-fi 7402  df-sup 7432  df-oi 7463  df-card 7810  df-cda 8032  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-2 10042  df-3 10043  df-n0 10206  df-z 10267  df-uz 10473  df-q 10559  df-rp 10597  df-xneg 10694  df-xadd 10695  df-xmul 10696  df-ioo 10904  df-ico 10906  df-icc 10907  df-fz 11028  df-fzo 11119  df-fl 11185  df-seq 11307  df-exp 11366  df-hash 11602  df-cj 11887  df-re 11888  df-im 11889  df-sqr 12023  df-abs 12024  df-clim 12265  df-rlim 12266  df-sum 12463  df-rest 13633  df-topgen 13650  df-psmet 16677  df-xmet 16678  df-met 16679  df-bl 16680  df-mopn 16681  df-top 16946  df-bases 16948  df-topon 16949  df-cmp 17433  df-ovol 19344  df-vol 19345  df-mbf 19495  df-itg1 19496  df-0p 19545
  Copyright terms: Public domain W3C validator