MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Unicode version

Theorem mbfimaopnlem 19539
Description: Lemma for mbfimaopn 19540. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1  |-  J  =  ( TopOpen ` fld )
mbfimaopn.2  |-  G  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
mbfimaopn.3  |-  B  =  ( (,) " ( QQ  X.  QQ ) )
mbfimaopn.4  |-  K  =  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
Assertion
Ref Expression
mbfimaopnlem  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  ( `' F " A )  e.  dom  vol )
Distinct variable groups:    x, A    x, y, B    x, F, y    x, G, y    x, J, y
Allowed substitution hints:    A( y)    K( x, y)

Proof of Theorem mbfimaopnlem
Dummy variables  t 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8  |-  G  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 eqid 2435 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
3 mbfimaopn.1 . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
41, 2, 3cnrehmeo 18970 . . . . . . 7  |-  G  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Homeo  J )
5 hmeocn 17784 . . . . . . 7  |-  ( G  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Homeo  J )  ->  G  e.  ( (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J ) )
64, 5ax-mp 8 . . . . . 6  |-  G  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )
7 cnima 17321 . . . . . 6  |-  ( ( G  e.  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  A  e.  J
)  ->  ( `' G " A )  e.  ( ( topGen `  ran  (,) )  tX  ( topGen ` 
ran  (,) ) ) )
86, 7mpan 652 . . . . 5  |-  ( A  e.  J  ->  ( `' G " A )  e.  ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) )
9 mbfimaopn.3 . . . . . . . . 9  |-  B  =  ( (,) " ( QQ  X.  QQ ) )
109fveq2i 5723 . . . . . . . 8  |-  ( topGen `  B )  =  (
topGen `  ( (,) " ( QQ  X.  QQ ) ) )
1110tgqioo 18823 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  B )
1211, 11oveq12i 6085 . . . . . 6  |-  ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  =  ( (
topGen `  B )  tX  ( topGen `  B )
)
13 qtopbas 18785 . . . . . . . 8  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
149, 13eqeltri 2505 . . . . . . 7  |-  B  e.  TopBases
15 txbasval 17630 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  ( ( topGen `
 B )  tX  ( topGen `  B )
)  =  ( B 
tX  B ) )
1614, 14, 15mp2an 654 . . . . . 6  |-  ( (
topGen `  B )  tX  ( topGen `  B )
)  =  ( B 
tX  B )
17 mbfimaopn.4 . . . . . . . 8  |-  K  =  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
1817txval 17588 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  ( B  tX  B )  =  (
topGen `  K ) )
1914, 14, 18mp2an 654 . . . . . 6  |-  ( B 
tX  B )  =  ( topGen `  K )
2012, 16, 193eqtri 2459 . . . . 5  |-  ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  =  ( topGen `  K )
218, 20syl6eleq 2525 . . . 4  |-  ( A  e.  J  ->  ( `' G " A )  e.  ( topGen `  K
) )
2217txbas 17591 . . . . . 6  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  K  e.  TopBases )
2314, 14, 22mp2an 654 . . . . 5  |-  K  e.  TopBases
24 eltg3 17019 . . . . 5  |-  ( K  e.  TopBases  ->  ( ( `' G " A )  e.  ( topGen `  K
)  <->  E. t ( t 
C_  K  /\  ( `' G " A )  =  U. t ) ) )
2523, 24ax-mp 8 . . . 4  |-  ( ( `' G " A )  e.  ( topGen `  K
)  <->  E. t ( t 
C_  K  /\  ( `' G " A )  =  U. t ) )
2621, 25sylib 189 . . 3  |-  ( A  e.  J  ->  E. t
( t  C_  K  /\  ( `' G " A )  =  U. t ) )
2726adantl 453 . 2  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  E. t
( t  C_  K  /\  ( `' G " A )  =  U. t ) )
281cnref1o 10599 . . . . . . . 8  |-  G :
( RR  X.  RR )
-1-1-onto-> CC
29 f1ofo 5673 . . . . . . . 8  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR ) -onto-> CC )
3028, 29ax-mp 8 . . . . . . 7  |-  G :
( RR  X.  RR ) -onto-> CC
31 elssuni 4035 . . . . . . . . 9  |-  ( A  e.  J  ->  A  C_ 
U. J )
323cnfldtopon 18809 . . . . . . . . . 10  |-  J  e.  (TopOn `  CC )
3332toponunii 16989 . . . . . . . . 9  |-  CC  =  U. J
3431, 33syl6sseqr 3387 . . . . . . . 8  |-  ( A  e.  J  ->  A  C_  CC )
3534ad2antlr 708 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A  C_  CC )
36 foimacnv 5684 . . . . . . 7  |-  ( ( G : ( RR 
X.  RR ) -onto-> CC 
/\  A  C_  CC )  ->  ( G "
( `' G " A ) )  =  A )
3730, 35, 36sylancr 645 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  =  A )
38 simprr 734 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' G " A )  = 
U. t )
3938imaeq2d 5195 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  =  ( G " U. t ) )
40 imauni 5985 . . . . . . 7  |-  ( G
" U. t )  =  U_ w  e.  t  ( G "
w )
4139, 40syl6eq 2483 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  = 
U_ w  e.  t  ( G " w
) )
4237, 41eqtr3d 2469 . . . . 5  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A  =  U_ w  e.  t  ( G " w ) )
4342imaeq2d 5195 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  =  ( `' F " U_ w  e.  t 
( G " w
) ) )
44 imaiun 5984 . . . 4  |-  ( `' F " U_ w  e.  t  ( G " w ) )  = 
U_ w  e.  t  ( `' F "
( G " w
) )
4543, 44syl6eq 2483 . . 3  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  = 
U_ w  e.  t  ( `' F "
( G " w
) ) )
46 ssdomg 7145 . . . . . . 7  |-  ( K  e.  TopBases  ->  ( t  C_  K  ->  t  ~<_  K ) )
4723, 46ax-mp 8 . . . . . 6  |-  ( t 
C_  K  ->  t  ~<_  K )
48 omelon 7593 . . . . . . . . . . 11  |-  om  e.  On
49 nnenom 11311 . . . . . . . . . . . 12  |-  NN  ~~  om
5049ensymi 7149 . . . . . . . . . . 11  |-  om  ~~  NN
51 isnumi 7825 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
5248, 50, 51mp2an 654 . . . . . . . . . 10  |-  NN  e.  dom  card
53 qnnen 12805 . . . . . . . . . . . . . . . . . . . 20  |-  QQ  ~~  NN
54 xpen 7262 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( QQ  ~~  NN  /\  QQ  ~~  NN )  -> 
( QQ  X.  QQ )  ~~  ( NN  X.  NN ) )
5553, 53, 54mp2an 654 . . . . . . . . . . . . . . . . . . 19  |-  ( QQ 
X.  QQ )  ~~  ( NN  X.  NN )
56 xpnnen 12800 . . . . . . . . . . . . . . . . . . 19  |-  ( NN 
X.  NN )  ~~  NN
5755, 56entri 7153 . . . . . . . . . . . . . . . . . 18  |-  ( QQ 
X.  QQ )  ~~  NN
5857, 49entr2i 7154 . . . . . . . . . . . . . . . . 17  |-  om  ~~  ( QQ  X.  QQ )
59 isnumi 7825 . . . . . . . . . . . . . . . . 17  |-  ( ( om  e.  On  /\  om 
~~  ( QQ  X.  QQ ) )  ->  ( QQ  X.  QQ )  e. 
dom  card )
6048, 58, 59mp2an 654 . . . . . . . . . . . . . . . 16  |-  ( QQ 
X.  QQ )  e. 
dom  card
61 ioof 10994 . . . . . . . . . . . . . . . . . 18  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
62 ffun 5585 . . . . . . . . . . . . . . . . . 18  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
6361, 62ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  Fun  (,)
64 qssre 10576 . . . . . . . . . . . . . . . . . . . 20  |-  QQ  C_  RR
65 ressxr 9121 . . . . . . . . . . . . . . . . . . . 20  |-  RR  C_  RR*
6664, 65sstri 3349 . . . . . . . . . . . . . . . . . . 19  |-  QQ  C_  RR*
67 xpss12 4973 . . . . . . . . . . . . . . . . . . 19  |-  ( ( QQ  C_  RR*  /\  QQ  C_ 
RR* )  ->  ( QQ  X.  QQ )  C_  ( RR*  X.  RR* )
)
6866, 66, 67mp2an 654 . . . . . . . . . . . . . . . . . 18  |-  ( QQ 
X.  QQ )  C_  ( RR*  X.  RR* )
6961fdmi 5588 . . . . . . . . . . . . . . . . . 18  |-  dom  (,)  =  ( RR*  X.  RR* )
7068, 69sseqtr4i 3373 . . . . . . . . . . . . . . . . 17  |-  ( QQ 
X.  QQ )  C_  dom  (,)
71 fores 5654 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  (,)  /\  ( QQ  X.  QQ )  C_  dom  (,) )  ->  ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ )
-onto-> ( (,) " ( QQ  X.  QQ ) ) )
7263, 70, 71mp2an 654 . . . . . . . . . . . . . . . 16  |-  ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ )
-onto-> ( (,) " ( QQ  X.  QQ ) )
73 fodomnum 7930 . . . . . . . . . . . . . . . 16  |-  ( ( QQ  X.  QQ )  e.  dom  card  ->  ( ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ ) -onto-> ( (,) " ( QQ  X.  QQ ) )  ->  ( (,) " ( QQ  X.  QQ ) )  ~<_  ( QQ  X.  QQ ) ) )
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15  |-  ( (,) " ( QQ  X.  QQ ) )  ~<_  ( QQ 
X.  QQ )
759, 74eqbrtri 4223 . . . . . . . . . . . . . 14  |-  B  ~<_  ( QQ  X.  QQ )
76 domentr 7158 . . . . . . . . . . . . . 14  |-  ( ( B  ~<_  ( QQ  X.  QQ )  /\  ( QQ  X.  QQ )  ~~  NN )  ->  B  ~<_  NN )
7775, 57, 76mp2an 654 . . . . . . . . . . . . 13  |-  B  ~<_  NN
7814elexi 2957 . . . . . . . . . . . . . 14  |-  B  e. 
_V
7978xpdom1 7199 . . . . . . . . . . . . 13  |-  ( B  ~<_  NN  ->  ( B  X.  B )  ~<_  ( NN 
X.  B ) )
8077, 79ax-mp 8 . . . . . . . . . . . 12  |-  ( B  X.  B )  ~<_  ( NN  X.  B )
81 nnex 9998 . . . . . . . . . . . . . 14  |-  NN  e.  _V
8281xpdom2 7195 . . . . . . . . . . . . 13  |-  ( B  ~<_  NN  ->  ( NN  X.  B )  ~<_  ( NN 
X.  NN ) )
8377, 82ax-mp 8 . . . . . . . . . . . 12  |-  ( NN 
X.  B )  ~<_  ( NN  X.  NN )
84 domtr 7152 . . . . . . . . . . . 12  |-  ( ( ( B  X.  B
)  ~<_  ( NN  X.  B )  /\  ( NN  X.  B )  ~<_  ( NN  X.  NN ) )  ->  ( B  X.  B )  ~<_  ( NN 
X.  NN ) )
8580, 83, 84mp2an 654 . . . . . . . . . . 11  |-  ( B  X.  B )  ~<_  ( NN  X.  NN )
86 domentr 7158 . . . . . . . . . . 11  |-  ( ( ( B  X.  B
)  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  ( B  X.  B )  ~<_  NN )
8785, 56, 86mp2an 654 . . . . . . . . . 10  |-  ( B  X.  B )  ~<_  NN
88 numdom 7911 . . . . . . . . . 10  |-  ( ( NN  e.  dom  card  /\  ( B  X.  B
)  ~<_  NN )  -> 
( B  X.  B
)  e.  dom  card )
8952, 87, 88mp2an 654 . . . . . . . . 9  |-  ( B  X.  B )  e. 
dom  card
90 eqid 2435 . . . . . . . . . . 11  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
91 vex 2951 . . . . . . . . . . . 12  |-  x  e. 
_V
92 vex 2951 . . . . . . . . . . . 12  |-  y  e. 
_V
9391, 92xpex 4982 . . . . . . . . . . 11  |-  ( x  X.  y )  e. 
_V
9490, 93fnmpt2i 6412 . . . . . . . . . 10  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  Fn  ( B  X.  B )
95 dffn4 5651 . . . . . . . . . 10  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  Fn  ( B  X.  B )  <->  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) : ( B  X.  B
) -onto-> ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) )
9694, 95mpbi 200 . . . . . . . . 9  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) : ( B  X.  B ) -onto-> ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )
97 fodomnum 7930 . . . . . . . . 9  |-  ( ( B  X.  B )  e.  dom  card  ->  ( ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) ) : ( B  X.  B )
-onto->
ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ->  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) )  ~<_  ( B  X.  B ) ) )
9889, 96, 97mp2 9 . . . . . . . 8  |-  ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  ~<_  ( B  X.  B )
99 domtr 7152 . . . . . . . 8  |-  ( ( ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ~<_  ( B  X.  B )  /\  ( B  X.  B )  ~<_  NN )  ->  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ~<_  NN )
10098, 87, 99mp2an 654 . . . . . . 7  |-  ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  ~<_  NN
10117, 100eqbrtri 4223 . . . . . 6  |-  K  ~<_  NN
102 domtr 7152 . . . . . 6  |-  ( ( t  ~<_  K  /\  K  ~<_  NN )  ->  t  ~<_  NN )
10347, 101, 102sylancl 644 . . . . 5  |-  ( t 
C_  K  ->  t  ~<_  NN )
104103ad2antrl 709 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  t  ~<_  NN )
10517eleq2i 2499 . . . . . . . . 9  |-  ( w  e.  K  <->  w  e.  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) ) )
10690, 93elrnmpt2 6175 . . . . . . . . 9  |-  ( w  e.  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  <->  E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y ) )
107105, 106bitri 241 . . . . . . . 8  |-  ( w  e.  K  <->  E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y
) )
108 elin 3522 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( `' ( Re  o.  F
) " x )  i^i  ( `' ( Im  o.  F )
" y ) )  <-> 
( z  e.  ( `' ( Re  o.  F ) " x
)  /\  z  e.  ( `' ( Im  o.  F ) " y
) ) )
109 mbff 19511 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
110109adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  F : dom  F --> CC )
111 fvco3 5792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( (
Re  o.  F ) `  z )  =  ( Re `  ( F `
 z ) ) )
112110, 111sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( Re  o.  F
) `  z )  =  ( Re `  ( F `  z ) ) )
113112eleq1d 2501 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Re  o.  F ) `  z
)  e.  x  <->  ( Re `  ( F `  z
) )  e.  x
) )
114 fvco3 5792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( (
Im  o.  F ) `  z )  =  ( Im `  ( F `
 z ) ) )
115110, 114sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( Im  o.  F
) `  z )  =  ( Im `  ( F `  z ) ) )
116115eleq1d 2501 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Im  o.  F ) `  z
)  e.  y  <->  ( Im `  ( F `  z
) )  e.  y ) )
117113, 116anbi12d 692 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y )  <-> 
( ( Re `  ( F `  z ) )  e.  x  /\  ( Im `  ( F `
 z ) )  e.  y ) ) )
118110ffvelrnda 5862 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
119 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( F `  z )  ->  (
Re `  w )  =  ( Re `  ( F `  z ) ) )
120 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( F `  z )  ->  (
Im `  w )  =  ( Im `  ( F `  z ) ) )
121119, 120opeq12d 3984 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  ( F `  z )  ->  <. (
Re `  w ) ,  ( Im `  w ) >.  =  <. ( Re `  ( F `
 z ) ) ,  ( Im `  ( F `  z ) ) >. )
1221cnrecnv 11962 . . . . . . . . . . . . . . . . . . . . 21  |-  `' G  =  ( w  e.  CC  |->  <. ( Re `  w ) ,  ( Im `  w )
>. )
123 opex 4419 . . . . . . . . . . . . . . . . . . . . 21  |-  <. (
Re `  ( F `  z ) ) ,  ( Im `  ( F `  z )
) >.  e.  _V
124121, 122, 123fvmpt 5798 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  z )  e.  CC  ->  ( `' G `  ( F `
 z ) )  =  <. ( Re `  ( F `  z ) ) ,  ( Im
`  ( F `  z ) ) >.
)
125118, 124syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( `' G `  ( F `
 z ) )  =  <. ( Re `  ( F `  z ) ) ,  ( Im
`  ( F `  z ) ) >.
)
126125eleq1d 2501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( `' G `  ( F `  z ) )  e.  ( x  X.  y )  <->  <. ( Re
`  ( F `  z ) ) ,  ( Im `  ( F `  z )
) >.  e.  ( x  X.  y ) ) )
127118biantrurd 495 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( `' G `  ( F `  z ) )  e.  ( x  X.  y )  <->  ( ( F `  z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) ) )
128126, 127bitr3d 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( <. ( Re `  ( F `  z )
) ,  ( Im
`  ( F `  z ) ) >.  e.  ( x  X.  y
)  <->  ( ( F `
 z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) ) )
129 opelxp 4900 . . . . . . . . . . . . . . . . 17  |-  ( <.
( Re `  ( F `  z )
) ,  ( Im
`  ( F `  z ) ) >.  e.  ( x  X.  y
)  <->  ( ( Re
`  ( F `  z ) )  e.  x  /\  ( Im
`  ( F `  z ) )  e.  y ) )
130 f1ocnv 5679 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' G : CC -1-1-onto-> ( RR  X.  RR ) )
131 f1ofn 5667 . . . . . . . . . . . . . . . . . . . 20  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  `' G  Fn  CC )
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  `' G  Fn  CC
133 elpreima 5842 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G  Fn  CC  ->  ( ( F `  z
)  e.  ( `' `' G " ( x  X.  y ) )  <-> 
( ( F `  z )  e.  CC  /\  ( `' G `  ( F `  z ) )  e.  ( x  X.  y ) ) ) )
134132, 133ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  ( `' `' G " ( x  X.  y ) )  <->  ( ( F `  z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) )
135 imacnvcnv 5326 . . . . . . . . . . . . . . . . . . 19  |-  ( `' `' G " ( x  X.  y ) )  =  ( G "
( x  X.  y
) )
136135eleq2i 2499 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  ( `' `' G " ( x  X.  y ) )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) )
137134, 136bitr3i 243 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) )
138128, 129, 1373bitr3g 279 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Re `  ( F `  z ) )  e.  x  /\  ( Im `  ( F `
 z ) )  e.  y )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) ) )
139117, 138bitrd 245 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y )  <-> 
( F `  z
)  e.  ( G
" ( x  X.  y ) ) ) )
140139pm5.32da 623 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  dom  F  /\  ( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) )  <->  ( z  e. 
dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
141 ref 11909 . . . . . . . . . . . . . . . . . . 19  |-  Re : CC
--> RR
142 fco 5592 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Re : CC --> RR  /\  F : dom  F --> CC )  ->  ( Re  o.  F ) : dom  F --> RR )
143141, 109, 142sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. MblFn  ->  ( Re  o.  F ) : dom  F --> RR )
144 ffn 5583 . . . . . . . . . . . . . . . . . 18  |-  ( ( Re  o.  F ) : dom  F --> RR  ->  ( Re  o.  F )  Fn  dom  F )
145 elpreima 5842 . . . . . . . . . . . . . . . . . 18  |-  ( ( Re  o.  F )  Fn  dom  F  -> 
( z  e.  ( `' ( Re  o.  F ) " x
)  <->  ( z  e. 
dom  F  /\  (
( Re  o.  F
) `  z )  e.  x ) ) )
146143, 144, 1453syl 19 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( z  e.  ( `' ( Re  o.  F ) "
x )  <->  ( z  e.  dom  F  /\  (
( Re  o.  F
) `  z )  e.  x ) ) )
147 imf 11910 . . . . . . . . . . . . . . . . . . 19  |-  Im : CC
--> RR
148 fco 5592 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Im : CC --> RR  /\  F : dom  F --> CC )  ->  ( Im  o.  F ) : dom  F --> RR )
149147, 109, 148sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. MblFn  ->  ( Im  o.  F ) : dom  F --> RR )
150 ffn 5583 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im  o.  F ) : dom  F --> RR  ->  ( Im  o.  F )  Fn  dom  F )
151 elpreima 5842 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im  o.  F )  Fn  dom  F  -> 
( z  e.  ( `' ( Im  o.  F ) " y
)  <->  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
152149, 150, 1513syl 19 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( z  e.  ( `' ( Im  o.  F ) "
y )  <->  ( z  e.  dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
153146, 152anbi12d 692 . . . . . . . . . . . . . . . 16  |-  ( F  e. MblFn  ->  ( ( z  e.  ( `' ( Re  o.  F )
" x )  /\  z  e.  ( `' ( Im  o.  F
) " y ) )  <->  ( ( z  e.  dom  F  /\  ( ( Re  o.  F ) `  z
)  e.  x )  /\  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) ) )
154 anandi 802 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  dom  F  /\  ( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) )  <->  ( ( z  e.  dom  F  /\  ( ( Re  o.  F ) `  z
)  e.  x )  /\  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
155153, 154syl6bbr 255 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( z  e.  ( `' ( Re  o.  F )
" x )  /\  z  e.  ( `' ( Im  o.  F
) " y ) )  <->  ( z  e. 
dom  F  /\  (
( ( Re  o.  F ) `  z
)  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) ) ) )
156155adantr 452 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  ( `' ( Re  o.  F
) " x )  /\  z  e.  ( `' ( Im  o.  F ) " y
) )  <->  ( z  e.  dom  F  /\  (
( ( Re  o.  F ) `  z
)  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) ) ) )
157 ffn 5583 . . . . . . . . . . . . . . . 16  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
158 elpreima 5842 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  dom  F  -> 
( z  e.  ( `' F " ( G
" ( x  X.  y ) ) )  <-> 
( z  e.  dom  F  /\  ( F `  z )  e.  ( G " ( x  X.  y ) ) ) ) )
159109, 157, 1583syl 19 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( z  e.  ( `' F "
( G " (
x  X.  y ) ) )  <->  ( z  e.  dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
160159adantr 452 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( z  e.  ( `' F "
( G " (
x  X.  y ) ) )  <->  ( z  e.  dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
161140, 156, 1603bitr4d 277 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  ( `' ( Re  o.  F
) " x )  /\  z  e.  ( `' ( Im  o.  F ) " y
) )  <->  z  e.  ( `' F " ( G
" ( x  X.  y ) ) ) ) )
162108, 161syl5bb 249 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( z  e.  ( ( `' ( Re  o.  F )
" x )  i^i  ( `' ( Im  o.  F ) "
y ) )  <->  z  e.  ( `' F " ( G
" ( x  X.  y ) ) ) ) )
163162eqrdv 2433 . . . . . . . . . . 11  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( `' ( Re  o.  F ) " x
)  i^i  ( `' ( Im  o.  F
) " y ) )  =  ( `' F " ( G
" ( x  X.  y ) ) ) )
164 ismbfcn 19515 . . . . . . . . . . . . . . . . . 18  |-  ( F : dom  F --> CC  ->  ( F  e. MblFn  <->  ( ( Re  o.  F )  e. MblFn  /\  ( Im  o.  F
)  e. MblFn ) )
)
165109, 164syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( F  e. MblFn  <->  ( ( Re  o.  F
)  e. MblFn  /\  (
Im  o.  F )  e. MblFn ) ) )
166165ibi 233 . . . . . . . . . . . . . . . 16  |-  ( F  e. MblFn  ->  ( ( Re  o.  F )  e. MblFn  /\  ( Im  o.  F
)  e. MblFn ) )
167166simpld 446 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( Re  o.  F )  e. MblFn )
168 ismbf 19514 . . . . . . . . . . . . . . . 16  |-  ( ( Re  o.  F ) : dom  F --> RR  ->  ( ( Re  o.  F
)  e. MblFn  <->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) "
x )  e.  dom  vol ) )
169143, 168syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( Re  o.  F )  e. MblFn  <->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
170167, 169mpbid 202 . . . . . . . . . . . . . 14  |-  ( F  e. MblFn  ->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) "
x )  e.  dom  vol )
171170adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. x  e.  ran  (,) ( `' ( Re  o.  F
) " x )  e.  dom  vol )
172 imassrn 5208 . . . . . . . . . . . . . . 15  |-  ( (,) " ( QQ  X.  QQ ) )  C_  ran  (,)
1739, 172eqsstri 3370 . . . . . . . . . . . . . 14  |-  B  C_  ran  (,)
174 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
175173, 174sseldi 3338 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  ran  (,) )
176 rsp 2758 . . . . . . . . . . . . 13  |-  ( A. x  e.  ran  (,) ( `' ( Re  o.  F ) " x
)  e.  dom  vol  ->  ( x  e.  ran  (,) 
->  ( `' ( Re  o.  F ) "
x )  e.  dom  vol ) )
177171, 175, 176sylc 58 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' ( Re  o.  F
) " x )  e.  dom  vol )
178166simprd 450 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( Im  o.  F )  e. MblFn )
179 ismbf 19514 . . . . . . . . . . . . . . . 16  |-  ( ( Im  o.  F ) : dom  F --> RR  ->  ( ( Im  o.  F
)  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) "
y )  e.  dom  vol ) )
180149, 179syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( Im  o.  F )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) " y
)  e.  dom  vol ) )
181178, 180mpbid 202 . . . . . . . . . . . . . 14  |-  ( F  e. MblFn  ->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) "
y )  e.  dom  vol )
182181adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. y  e.  ran  (,) ( `' ( Im  o.  F
) " y )  e.  dom  vol )
183 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
184173, 183sseldi 3338 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  ran  (,) )
185 rsp 2758 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  (,) ( `' ( Im  o.  F ) " y
)  e.  dom  vol  ->  ( y  e.  ran  (,) 
->  ( `' ( Im  o.  F ) "
y )  e.  dom  vol ) )
186182, 184, 185sylc 58 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' ( Im  o.  F
) " y )  e.  dom  vol )
187 inmbl 19428 . . . . . . . . . . . 12  |-  ( ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" y )  e. 
dom  vol )  ->  (
( `' ( Re  o.  F ) "
x )  i^i  ( `' ( Im  o.  F ) " y
) )  e.  dom  vol )
188177, 186, 187syl2anc 643 . . . . . . . . . . 11  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( `' ( Re  o.  F ) " x
)  i^i  ( `' ( Im  o.  F
) " y ) )  e.  dom  vol )
189163, 188eqeltrrd 2510 . . . . . . . . . 10  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' F " ( G "
( x  X.  y
) ) )  e. 
dom  vol )
190 imaeq2 5191 . . . . . . . . . . . 12  |-  ( w  =  ( x  X.  y )  ->  ( G " w )  =  ( G " (
x  X.  y ) ) )
191190imaeq2d 5195 . . . . . . . . . . 11  |-  ( w  =  ( x  X.  y )  ->  ( `' F " ( G
" w ) )  =  ( `' F " ( G " (
x  X.  y ) ) ) )
192191eleq1d 2501 . . . . . . . . . 10  |-  ( w  =  ( x  X.  y )  ->  (
( `' F "
( G " w
) )  e.  dom  vol  <->  ( `' F " ( G
" ( x  X.  y ) ) )  e.  dom  vol )
)
193189, 192syl5ibrcom 214 . . . . . . . . 9  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( w  =  ( x  X.  y )  ->  ( `' F " ( G
" w ) )  e.  dom  vol )
)
194193rexlimdvva 2829 . . . . . . . 8  |-  ( F  e. MblFn  ->  ( E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y
)  ->  ( `' F " ( G "
w ) )  e. 
dom  vol ) )
195107, 194syl5bi 209 . . . . . . 7  |-  ( F  e. MblFn  ->  ( w  e.  K  ->  ( `' F " ( G "
w ) )  e. 
dom  vol ) )
196195ralrimiv 2780 . . . . . 6  |-  ( F  e. MblFn  ->  A. w  e.  K  ( `' F " ( G
" w ) )  e.  dom  vol )
197 ssralv 3399 . . . . . 6  |-  ( t 
C_  K  ->  ( A. w  e.  K  ( `' F " ( G
" w ) )  e.  dom  vol  ->  A. w  e.  t  ( `' F " ( G
" w ) )  e.  dom  vol )
)
198196, 197mpan9 456 . . . . 5  |-  ( ( F  e. MblFn  /\  t  C_  K )  ->  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
199198ad2ant2r 728 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
200 iunmbl2 19443 . . . 4  |-  ( ( t  ~<_  NN  /\  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )  ->  U_ w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
201104, 199, 200syl2anc 643 . . 3  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  U_ w  e.  t  ( `' F " ( G " w
) )  e.  dom  vol )
20245, 201eqeltrd 2509 . 2  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  e. 
dom  vol )
20327, 202exlimddv 1648 1  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  ( `' F " A )  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   <.cop 3809   U.cuni 4007   U_ciun 4085   class class class wbr 4204   Oncon0 4573   omcom 4837    X. cxp 4868   `'ccnv 4869   dom cdm 4870   ran crn 4871    |` cres 4872   "cima 4873    o. ccom 4874   Fun wfun 5440    Fn wfn 5441   -->wf 5442   -onto->wfo 5444   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075    ~~ cen 7098    ~<_ cdom 7099   cardccrd 7814   CCcc 8980   RRcr 8981   _ici 8984    + caddc 8985    x. cmul 8987   RR*cxr 9111   NNcn 9992   QQcq 10566   (,)cioo 10908   Recre 11894   Imcim 11895   TopOpenctopn 13641   topGenctg 13657  ℂfldccnfld 16695   TopBasesctb 16954    Cn ccn 17280    tX ctx 17584    Homeo chmeo 17777   volcvol 19352  MblFncmbf 19498
This theorem is referenced by:  mbfimaopn  19540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cc 8307  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cn 17283  df-cnp 17284  df-tx 17586  df-hmeo 17779  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-ovol 19353  df-vol 19354  df-mbf 19504
  Copyright terms: Public domain W3C validator