MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimsup Unicode version

Theorem mbflimsup 19037
Description: The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 9-May-2016.)
Hypotheses
Ref Expression
mbflimsup.1  |-  Z  =  ( ZZ>= `  M )
mbflimsup.2  |-  G  =  ( x  e.  A  |->  ( limsup `  ( n  e.  Z  |->  B ) ) )
mbflimsup.h  |-  H  =  ( m  e.  RR  |->  sup ( ( ( ( n  e.  Z  |->  B ) " ( m [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
mbflimsup.3  |-  ( ph  ->  M  e.  ZZ )
mbflimsup.4  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  e.  RR )
mbflimsup.5  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
mbflimsup.6  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
Assertion
Ref Expression
mbflimsup  |-  ( ph  ->  G  e. MblFn )
Distinct variable groups:    x, n, A    B, m    ph, n, x    m, M    m, n, x, Z
Allowed substitution hints:    ph( m)    A( m)    B( x, n)    G( x, m, n)    H( x, m, n)    M( x, n)

Proof of Theorem mbflimsup
Dummy variables  i 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflimsup.2 . . 3  |-  G  =  ( x  e.  A  |->  ( limsup `  ( n  e.  Z  |->  B ) ) )
2 mbflimsup.h . . . . . 6  |-  H  =  ( m  e.  RR  |->  sup ( ( ( ( n  e.  Z  |->  B ) " ( m [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
3 mbflimsup.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
4 fvex 5555 . . . . . . . . 9  |-  ( ZZ>= `  M )  e.  _V
53, 4eqeltri 2366 . . . . . . . 8  |-  Z  e. 
_V
65mptex 5762 . . . . . . 7  |-  ( n  e.  Z  |->  B )  e.  _V
76a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  e.  _V )
8 uzssz 10263 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
93, 8eqsstri 3221 . . . . . . . 8  |-  Z  C_  ZZ
10 zssre 10047 . . . . . . . 8  |-  ZZ  C_  RR
119, 10sstri 3201 . . . . . . 7  |-  Z  C_  RR
1211a1i 10 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  Z  C_  RR )
13 mbflimsup.3 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
143uzsup 10983 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
1513, 14syl 15 . . . . . . 7  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
1615adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
172, 7, 12, 16limsupval2 11970 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  =  sup ( ( H " Z ) ,  RR* ,  `'  <  ) )
18 imassrn 5041 . . . . . . 7  |-  ( H
" Z )  C_  ran  H
1913adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  ZZ )
20 mbflimsup.6 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  RR )
2120anass1rs 782 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  RR )
22 eqid 2296 . . . . . . . . . 10  |-  ( n  e.  Z  |->  B )  =  ( n  e.  Z  |->  B )
2321, 22fmptd 5700 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> RR )
24 mbflimsup.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  e.  RR )
25 ltpnf 10479 . . . . . . . . . 10  |-  ( (
limsup `  ( n  e.  Z  |->  B ) )  e.  RR  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  <  +oo )
2624, 25syl 15 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  <  +oo )
272, 3limsupgre 11971 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  |->  B ) : Z --> RR  /\  ( limsup `  (
n  e.  Z  |->  B ) )  <  +oo )  ->  H : RR --> RR )
2819, 23, 26, 27syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  H : RR --> RR )
29 frn 5411 . . . . . . . 8  |-  ( H : RR --> RR  ->  ran 
H  C_  RR )
3028, 29syl 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ran  H 
C_  RR )
3118, 30syl5ss 3203 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( H " Z )  C_  RR )
32 fdm 5409 . . . . . . . . . . 11  |-  ( H : RR --> RR  ->  dom 
H  =  RR )
3328, 32syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  dom  H  =  RR )
3433ineq1d 3382 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( dom  H  i^i  Z )  =  ( RR  i^i  Z ) )
35 dfss1 3386 . . . . . . . . . 10  |-  ( Z 
C_  RR  <->  ( RR  i^i  Z )  =  Z )
3611, 35mpbi 199 . . . . . . . . 9  |-  ( RR 
i^i  Z )  =  Z
3734, 36syl6eq 2344 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( dom  H  i^i  Z )  =  Z )
38 uzid 10258 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
3913, 38syl 15 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4039, 3syl6eleqr 2387 . . . . . . . . . 10  |-  ( ph  ->  M  e.  Z )
4140adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  Z )
42 ne0i 3474 . . . . . . . . 9  |-  ( M  e.  Z  ->  Z  =/=  (/) )
4341, 42syl 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  Z  =/=  (/) )
4437, 43eqnetrd 2477 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( dom  H  i^i  Z )  =/=  (/) )
45 imadisj 5048 . . . . . . . 8  |-  ( ( H " Z )  =  (/)  <->  ( dom  H  i^i  Z )  =  (/) )
4645necon3bii 2491 . . . . . . 7  |-  ( ( H " Z )  =/=  (/)  <->  ( dom  H  i^i  Z )  =/=  (/) )
4744, 46sylibr 203 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( H " Z )  =/=  (/) )
4824leidd 9355 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  <_  ( limsup `  (
n  e.  Z  |->  B ) ) )
4921rexrd 8897 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  RR* )
5049, 22fmptd 5700 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> RR* )
5124rexrd 8897 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  e.  RR* )
522limsuple 11968 . . . . . . . . . . 11  |-  ( ( Z  C_  RR  /\  (
n  e.  Z  |->  B ) : Z --> RR*  /\  ( limsup `
 ( n  e.  Z  |->  B ) )  e.  RR* )  ->  (
( limsup `  ( n  e.  Z  |->  B ) )  <_  ( limsup `  ( n  e.  Z  |->  B ) )  <->  A. y  e.  RR  ( limsup `  (
n  e.  Z  |->  B ) )  <_  ( H `  y )
) )
5312, 50, 51, 52syl3anc 1182 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( limsup `  ( n  e.  Z  |->  B ) )  <_  ( limsup `  ( n  e.  Z  |->  B ) )  <->  A. y  e.  RR  ( limsup `  (
n  e.  Z  |->  B ) )  <_  ( H `  y )
) )
5448, 53mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  RR  ( limsup `  (
n  e.  Z  |->  B ) )  <_  ( H `  y )
)
55 ssralv 3250 . . . . . . . . 9  |-  ( Z 
C_  RR  ->  ( A. y  e.  RR  ( limsup `
 ( n  e.  Z  |->  B ) )  <_  ( H `  y )  ->  A. y  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
( H `  y
) ) )
5611, 54, 55mpsyl 59 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
( H `  y
) )
572limsupgf 11965 . . . . . . . . . 10  |-  H : RR
--> RR*
58 ffn 5405 . . . . . . . . . 10  |-  ( H : RR --> RR*  ->  H  Fn  RR )
5957, 58ax-mp 8 . . . . . . . . 9  |-  H  Fn  RR
60 breq2 4043 . . . . . . . . . 10  |-  ( z  =  ( H `  y )  ->  (
( limsup `  ( n  e.  Z  |->  B ) )  <_  z  <->  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
( H `  y
) ) )
6160ralima 5774 . . . . . . . . 9  |-  ( ( H  Fn  RR  /\  Z  C_  RR )  -> 
( A. z  e.  ( H " Z
) ( limsup `  (
n  e.  Z  |->  B ) )  <_  z  <->  A. y  e.  Z  (
limsup `  ( n  e.  Z  |->  B ) )  <_  ( H `  y ) ) )
6259, 12, 61sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  ( H " Z ) (
limsup `  ( n  e.  Z  |->  B ) )  <_  z  <->  A. y  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
( H `  y
) ) )
6356, 62mpbird 223 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  A. z  e.  ( H " Z
) ( limsup `  (
n  e.  Z  |->  B ) )  <_  z
)
64 breq1 4042 . . . . . . . . 9  |-  ( y  =  ( limsup `  (
n  e.  Z  |->  B ) )  ->  (
y  <_  z  <->  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
z ) )
6564ralbidv 2576 . . . . . . . 8  |-  ( y  =  ( limsup `  (
n  e.  Z  |->  B ) )  ->  ( A. z  e.  ( H " Z ) y  <_  z  <->  A. z  e.  ( H " Z
) ( limsup `  (
n  e.  Z  |->  B ) )  <_  z
) )
6665rspcev 2897 . . . . . . 7  |-  ( ( ( limsup `  ( n  e.  Z  |->  B ) )  e.  RR  /\  A. z  e.  ( H
" Z ) (
limsup `  ( n  e.  Z  |->  B ) )  <_  z )  ->  E. y  e.  RR  A. z  e.  ( H
" Z ) y  <_  z )
6724, 63, 66syl2anc 642 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. z  e.  ( H " Z
) y  <_  z
)
68 infmxrre 10670 . . . . . 6  |-  ( ( ( H " Z
)  C_  RR  /\  ( H " Z )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ( H " Z
) y  <_  z
)  ->  sup (
( H " Z
) ,  RR* ,  `'  <  )  =  sup (
( H " Z
) ,  RR ,  `'  <  ) )
6931, 47, 67, 68syl3anc 1182 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  sup ( ( H " Z ) ,  RR* ,  `'  <  )  =  sup ( ( H " Z ) ,  RR ,  `'  <  ) )
70 df-ima 4718 . . . . . . 7  |-  ( H
" Z )  =  ran  ( H  |`  Z )
7128feqmptd 5591 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  H  =  ( i  e.  RR  |->  ( H `  i ) ) )
7271reseq1d 4970 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( H  |`  Z )  =  ( ( i  e.  RR  |->  ( H `  i ) )  |`  Z ) )
73 resmpt 5016 . . . . . . . . . . 11  |-  ( Z 
C_  RR  ->  ( ( i  e.  RR  |->  ( H `  i ) )  |`  Z )  =  ( i  e.  Z  |->  ( H `  i ) ) )
7411, 73ax-mp 8 . . . . . . . . . 10  |-  ( ( i  e.  RR  |->  ( H `  i ) )  |`  Z )  =  ( i  e.  Z  |->  ( H `  i ) )
7572, 74syl6eq 2344 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( H  |`  Z )  =  ( i  e.  Z  |->  ( H `  i
) ) )
76 simplll 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  n  e.  ( ZZ>= `  i )
)  ->  ph )
773uztrn2 10261 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  Z  /\  n  e.  ( ZZ>= `  i ) )  ->  n  e.  Z )
7877adantll 694 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  n  e.  ( ZZ>= `  i )
)  ->  n  e.  Z )
79 simpllr 735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  n  e.  ( ZZ>= `  i )
)  ->  x  e.  A )
8076, 78, 79, 20syl12anc 1180 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  n  e.  ( ZZ>= `  i )
)  ->  B  e.  RR )
81 eqid 2296 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  i
)  |->  B )  =  ( n  e.  (
ZZ>= `  i )  |->  B )
8280, 81fmptd 5700 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  (
n  e.  ( ZZ>= `  i )  |->  B ) : ( ZZ>= `  i
) --> RR )
83 frn 5411 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( ZZ>= `  i )  |->  B ) : ( ZZ>= `  i
) --> RR  ->  ran  ( n  e.  ( ZZ>=
`  i )  |->  B )  C_  RR )
8482, 83syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ran  ( n  e.  ( ZZ>=
`  i )  |->  B )  C_  RR )
8584adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  ->  ran  ( n  e.  (
ZZ>= `  i )  |->  B )  C_  RR )
86 fdm 5409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= `  i )  |->  B ) : ( ZZ>= `  i
) --> RR  ->  dom  ( n  e.  ( ZZ>=
`  i )  |->  B )  =  ( ZZ>= `  i ) )
8782, 86syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  dom  ( n  e.  ( ZZ>=
`  i )  |->  B )  =  ( ZZ>= `  i ) )
88 simpr 447 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  Z )
8988, 3syl6eleq 2386 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
90 eluzelz 10254 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  e.  ( ZZ>= `  M
)  ->  i  e.  ZZ )
9189, 90syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  ZZ )
9291adantlr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  i  e.  ZZ )
93 uzid 10258 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ZZ  ->  i  e.  ( ZZ>= `  i )
)
94 ne0i 3474 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( ZZ>= `  i
)  ->  ( ZZ>= `  i )  =/=  (/) )
9592, 93, 943syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( ZZ>=
`  i )  =/=  (/) )
9687, 95eqnetrd 2477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  dom  ( n  e.  ( ZZ>=
`  i )  |->  B )  =/=  (/) )
97 dm0rn0 4911 . . . . . . . . . . . . . . . . . 18  |-  ( dom  ( n  e.  (
ZZ>= `  i )  |->  B )  =  (/)  <->  ran  ( n  e.  ( ZZ>= `  i
)  |->  B )  =  (/) )
9897necon3bii 2491 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( n  e.  (
ZZ>= `  i )  |->  B )  =/=  (/)  <->  ran  ( n  e.  ( ZZ>= `  i
)  |->  B )  =/=  (/) )
9996, 98sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ran  ( n  e.  ( ZZ>=
`  i )  |->  B )  =/=  (/) )
10099adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  ->  ran  ( n  e.  (
ZZ>= `  i )  |->  B )  =/=  (/) )
10111sseli 3189 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  Z  ->  i  e.  RR )
102 ffvelrn 5679 . . . . . . . . . . . . . . . . . 18  |-  ( ( H : RR --> RR  /\  i  e.  RR )  ->  ( H `  i
)  e.  RR )
10328, 101, 102syl2an 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( H `  i )  e.  RR )
10489adantlr 695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
105 uzss 10264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  i )  C_  ( ZZ>=
`  M ) )
106104, 105syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( ZZ>=
`  i )  C_  ( ZZ>= `  M )
)
107106, 3syl6sseqr 3238 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( ZZ>=
`  i )  C_  Z )
108103leidd 9355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( H `  i )  <_  ( H `  i
) )
10911a1i 10 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  Z  C_  RR )
11050adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  (
n  e.  Z  |->  B ) : Z --> RR* )
111 simpr 447 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  i  e.  Z )
11211, 111sseldi 3191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  i  e.  RR )
113103rexrd 8897 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( H `  i )  e.  RR* )
1142limsupgle 11967 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  C_  RR  /\  ( n  e.  Z  |->  B ) : Z --> RR* )  /\  i  e.  RR  /\  ( H `
 i )  e. 
RR* )  ->  (
( H `  i
)  <_  ( H `  i )  <->  A. k  e.  Z  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) ) ) )
115109, 110, 112, 113, 114syl211anc 1188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  (
( H `  i
)  <_  ( H `  i )  <->  A. k  e.  Z  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) ) ) )
116108, 115mpbid 201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  A. k  e.  Z  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) ) )
117 ssralv 3250 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ZZ>= `  i )  C_  Z  ->  ( A. k  e.  Z  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) )  ->  A. k  e.  ( ZZ>=
`  i ) ( i  <_  k  ->  ( ( n  e.  Z  |->  B ) `  k
)  <_  ( H `  i ) ) ) )
118107, 116, 117sylc 56 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  A. k  e.  ( ZZ>= `  i )
( i  <_  k  ->  ( ( n  e.  Z  |->  B ) `  k )  <_  ( H `  i )
) )
119107adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( ZZ>= `  i )  C_  Z
)
120 resmpt 5016 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ZZ>= `  i )  C_  Z  ->  ( ( n  e.  Z  |->  B )  |`  ( ZZ>= `  i )
)  =  ( n  e.  ( ZZ>= `  i
)  |->  B ) )
121119, 120syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
n  e.  Z  |->  B )  |`  ( ZZ>= `  i ) )  =  ( n  e.  (
ZZ>= `  i )  |->  B ) )
122121fveq1d 5543 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
( n  e.  Z  |->  B )  |`  ( ZZ>=
`  i ) ) `
 k )  =  ( ( n  e.  ( ZZ>= `  i )  |->  B ) `  k
) )
123 fvres 5558 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  ( ZZ>= `  i
)  ->  ( (
( n  e.  Z  |->  B )  |`  ( ZZ>=
`  i ) ) `
 k )  =  ( ( n  e.  Z  |->  B ) `  k ) )
124123adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
( n  e.  Z  |->  B )  |`  ( ZZ>=
`  i ) ) `
 k )  =  ( ( n  e.  Z  |->  B ) `  k ) )
125122, 124eqtr3d 2330 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
n  e.  ( ZZ>= `  i )  |->  B ) `
 k )  =  ( ( n  e.  Z  |->  B ) `  k ) )
126125breq1d 4049 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
( n  e.  (
ZZ>= `  i )  |->  B ) `  k )  <_  ( H `  i )  <->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) ) )
127 eluzle 10256 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ZZ>= `  i
)  ->  i  <_  k )
128127adantl 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  i  <_  k )
129 biimt 325 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  <_  k  ->  (
( ( n  e.  Z  |->  B ) `  k )  <_  ( H `  i )  <->  ( i  <_  k  ->  ( ( n  e.  Z  |->  B ) `  k
)  <_  ( H `  i ) ) ) )
130128, 129syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
( n  e.  Z  |->  B ) `  k
)  <_  ( H `  i )  <->  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) ) ) )
131126, 130bitrd 244 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
( n  e.  (
ZZ>= `  i )  |->  B ) `  k )  <_  ( H `  i )  <->  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  ( H `  i ) ) ) )
132131ralbidva 2572 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  i ) ( ( n  e.  (
ZZ>= `  i )  |->  B ) `  k )  <_  ( H `  i )  <->  A. k  e.  ( ZZ>= `  i )
( i  <_  k  ->  ( ( n  e.  Z  |->  B ) `  k )  <_  ( H `  i )
) ) )
133118, 132mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  A. k  e.  ( ZZ>= `  i )
( ( n  e.  ( ZZ>= `  i )  |->  B ) `  k
)  <_  ( H `  i ) )
134 ffn 5405 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= `  i )  |->  B ) : ( ZZ>= `  i
) --> RR  ->  (
n  e.  ( ZZ>= `  i )  |->  B )  Fn  ( ZZ>= `  i
) )
135 breq1 4042 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( n  e.  ( ZZ>= `  i
)  |->  B ) `  k )  ->  (
z  <_  ( H `  i )  <->  ( (
n  e.  ( ZZ>= `  i )  |->  B ) `
 k )  <_ 
( H `  i
) ) )
136135ralrn 5684 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( ZZ>= `  i )  |->  B )  Fn  ( ZZ>= `  i
)  ->  ( A. z  e.  ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) z  <_  ( H `  i )  <->  A. k  e.  ( ZZ>= `  i )
( ( n  e.  ( ZZ>= `  i )  |->  B ) `  k
)  <_  ( H `  i ) ) )
13782, 134, 1363syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( A. z  e.  ran  ( n  e.  ( ZZ>=
`  i )  |->  B ) z  <_  ( H `  i )  <->  A. k  e.  ( ZZ>= `  i ) ( ( n  e.  ( ZZ>= `  i )  |->  B ) `
 k )  <_ 
( H `  i
) ) )
138133, 137mpbird 223 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  A. z  e.  ran  ( n  e.  ( ZZ>= `  i )  |->  B ) z  <_ 
( H `  i
) )
139 breq2 4043 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( H `  i )  ->  (
z  <_  y  <->  z  <_  ( H `  i ) ) )
140139ralbidv 2576 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( H `  i )  ->  ( A. z  e.  ran  ( n  e.  ( ZZ>=
`  i )  |->  B ) z  <_  y  <->  A. z  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) z  <_  ( H `  i ) ) )
141140rspcev 2897 . . . . . . . . . . . . . . . . 17  |-  ( ( ( H `  i
)  e.  RR  /\  A. z  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) z  <_  ( H `  i ) )  ->  E. y  e.  RR  A. z  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) z  <_  y )
142103, 138, 141syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  ( ZZ>= `  i )  |->  B ) z  <_ 
y )
143142adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  ->  E. y  e.  RR  A. z  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) z  <_  y )
1449sseli 3189 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ZZ )
145 eluz 10257 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  i )  <->  i  <_  k ) )
14692, 144, 145syl2an 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  Z )  ->  (
k  e.  ( ZZ>= `  i )  <->  i  <_  k ) )
147146biimprd 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  Z )  ->  (
i  <_  k  ->  k  e.  ( ZZ>= `  i
) ) )
148147impr 602 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
k  e.  ( ZZ>= `  i ) )
149148, 125syldan 456 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
( ( n  e.  ( ZZ>= `  i )  |->  B ) `  k
)  =  ( ( n  e.  Z  |->  B ) `  k ) )
15082adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
( n  e.  (
ZZ>= `  i )  |->  B ) : ( ZZ>= `  i ) --> RR )
151150, 134syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
( n  e.  (
ZZ>= `  i )  |->  B )  Fn  ( ZZ>= `  i ) )
152 fnfvelrn 5678 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  (
ZZ>= `  i )  |->  B )  Fn  ( ZZ>= `  i )  /\  k  e.  ( ZZ>= `  i )
)  ->  ( (
n  e.  ( ZZ>= `  i )  |->  B ) `
 k )  e. 
ran  ( n  e.  ( ZZ>= `  i )  |->  B ) )
153151, 148, 152syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
( ( n  e.  ( ZZ>= `  i )  |->  B ) `  k
)  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) )
154149, 153eqeltrrd 2371 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
( ( n  e.  Z  |->  B ) `  k )  e.  ran  ( n  e.  ( ZZ>=
`  i )  |->  B ) )
155 suprub 9731 . . . . . . . . . . . . . . 15  |-  ( ( ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B )  C_  RR  /\  ran  ( n  e.  ( ZZ>= `  i
)  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  ( ZZ>= `  i )  |->  B ) z  <_ 
y )  /\  (
( n  e.  Z  |->  B ) `  k
)  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) )  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )
15685, 100, 143, 154, 155syl31anc 1185 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  ( k  e.  Z  /\  i  <_  k ) )  -> 
( ( n  e.  Z  |->  B ) `  k )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )
157156expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z
)  /\  k  e.  Z )  ->  (
i  <_  k  ->  ( ( n  e.  Z  |->  B ) `  k
)  <_  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
158157ralrimiva 2639 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  A. k  e.  Z  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
159 suprcl 9730 . . . . . . . . . . . . . . 15  |-  ( ( ran  ( n  e.  ( ZZ>= `  i )  |->  B )  C_  RR  /\ 
ran  ( n  e.  ( ZZ>= `  i )  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  ( ZZ>= `  i )  |->  B ) z  <_ 
y )  ->  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  e.  RR )
16084, 99, 142, 159syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  e.  RR )
161160rexrd 8897 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  e.  RR* )
1622limsupgle 11967 . . . . . . . . . . . . 13  |-  ( ( ( Z  C_  RR  /\  ( n  e.  Z  |->  B ) : Z --> RR* )  /\  i  e.  RR  /\  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  )  e.  RR* )  ->  ( ( H `  i )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <->  A. k  e.  Z  ( i  <_  k  ->  ( (
n  e.  Z  |->  B ) `  k )  <_  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) ) )
163109, 110, 112, 161, 162syl211anc 1188 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  (
( H `  i
)  <_  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <->  A. k  e.  Z  ( i  <_  k  ->  ( ( n  e.  Z  |->  B ) `  k )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) ) )
164158, 163mpbird 223 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( H `  i )  <_  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )
165 suprleub 9734 . . . . . . . . . . . . 13  |-  ( ( ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B )  C_  RR  /\  ran  ( n  e.  ( ZZ>= `  i
)  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  ( ZZ>= `  i )  |->  B ) z  <_ 
y )  /\  ( H `  i )  e.  RR )  ->  ( sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )  <_  ( H `  i
)  <->  A. z  e.  ran  ( n  e.  ( ZZ>=
`  i )  |->  B ) z  <_  ( H `  i )
) )
16684, 99, 142, 103, 165syl31anc 1185 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )  <_  ( H `  i
)  <->  A. z  e.  ran  ( n  e.  ( ZZ>=
`  i )  |->  B ) z  <_  ( H `  i )
) )
167138, 166mpbird 223 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <_  ( H `  i )
)
168103, 160letri3d 8977 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  (
( H `  i
)  =  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <->  ( ( H `
 i )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )  /\  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <_  ( H `  i ) ) ) )
169164, 167, 168mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( H `  i )  =  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )
170169mpteq2dva 4122 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
i  e.  Z  |->  ( H `  i ) )  =  ( i  e.  Z  |->  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
17175, 170eqtrd 2328 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( H  |`  Z )  =  ( i  e.  Z  |->  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
172171rneqd 4922 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( H  |`  Z )  =  ran  ( i  e.  Z  |->  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
17370, 172syl5eq 2340 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( H " Z )  =  ran  ( i  e.  Z  |->  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
174173supeq1d 7215 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  sup ( ( H " Z ) ,  RR ,  `'  <  )  =  sup ( ran  (
i  e.  Z  |->  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
) ,  RR ,  `'  <  ) )
17517, 69, 1743eqtrd 2332 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( limsup `
 ( n  e.  Z  |->  B ) )  =  sup ( ran  ( i  e.  Z  |->  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) ,  RR ,  `'  <  ) )
176175mpteq2dva 4122 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( limsup `  ( n  e.  Z  |->  B ) ) )  =  ( x  e.  A  |->  sup ( ran  ( i  e.  Z  |->  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) ,  RR ,  `'  <  ) ) )
1771, 176syl5eq 2340 . 2  |-  ( ph  ->  G  =  ( x  e.  A  |->  sup ( ran  ( i  e.  Z  |->  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) ,  RR ,  `'  <  ) ) )
178 eqid 2296 . . 3  |-  ( x  e.  A  |->  sup ( ran  ( i  e.  Z  |->  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) ,  RR ,  `'  <  ) )  =  ( x  e.  A  |->  sup ( ran  (
i  e.  Z  |->  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
) ,  RR ,  `'  <  ) )
179 eqid 2296 . . . 4  |-  ( ZZ>= `  i )  =  (
ZZ>= `  i )
180 eqid 2296 . . . 4  |-  ( x  e.  A  |->  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )  =  ( x  e.  A  |->  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
)
181 simpll 730 . . . . 5  |-  ( ( ( ph  /\  i  e.  Z )  /\  n  e.  ( ZZ>= `  i )
)  ->  ph )
18277adantll 694 . . . . 5  |-  ( ( ( ph  /\  i  e.  Z )  /\  n  e.  ( ZZ>= `  i )
)  ->  n  e.  Z )
183 mbflimsup.5 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
184181, 182, 183syl2anc 642 . . . 4  |-  ( ( ( ph  /\  i  e.  Z )  /\  n  e.  ( ZZ>= `  i )
)  ->  ( x  e.  A  |->  B )  e. MblFn )
185 simpll 730 . . . . 5  |-  ( ( ( ph  /\  i  e.  Z )  /\  (
n  e.  ( ZZ>= `  i )  /\  x  e.  A ) )  ->  ph )
18677ad2ant2lr 728 . . . . 5  |-  ( ( ( ph  /\  i  e.  Z )  /\  (
n  e.  ( ZZ>= `  i )  /\  x  e.  A ) )  ->  n  e.  Z )
187 simprr 733 . . . . 5  |-  ( ( ( ph  /\  i  e.  Z )  /\  (
n  e.  ( ZZ>= `  i )  /\  x  e.  A ) )  ->  x  e.  A )
188185, 186, 187, 20syl12anc 1180 . . . 4  |-  ( ( ( ph  /\  i  e.  Z )  /\  (
n  e.  ( ZZ>= `  i )  /\  x  e.  A ) )  ->  B  e.  RR )
18980ralrimiva 2639 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  A. n  e.  ( ZZ>= `  i ) B  e.  RR )
190 breq1 4042 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <_  y  <->  B  <_  y ) )
19181, 190ralrnmpt 5685 . . . . . . . 8  |-  ( A. n  e.  ( ZZ>= `  i ) B  e.  RR  ->  ( A. z  e.  ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) z  <_  y  <->  A. n  e.  ( ZZ>= `  i ) B  <_  y ) )
192189, 191syl 15 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( A. z  e.  ran  ( n  e.  ( ZZ>=
`  i )  |->  B ) z  <_  y  <->  A. n  e.  ( ZZ>= `  i ) B  <_ 
y ) )
193192rexbidv 2577 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  ( E. y  e.  RR  A. z  e.  ran  (
n  e.  ( ZZ>= `  i )  |->  B ) z  <_  y  <->  E. y  e.  RR  A. n  e.  ( ZZ>= `  i ) B  <_  y ) )
194142, 193mpbid 201 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  E. y  e.  RR  A. n  e.  ( ZZ>= `  i ) B  <_  y )
195194an32s 779 . . . 4  |-  ( ( ( ph  /\  i  e.  Z )  /\  x  e.  A )  ->  E. y  e.  RR  A. n  e.  ( ZZ>= `  i ) B  <_  y )
196179, 180, 91, 184, 188, 195mbfsup 19035 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  (
x  e.  A  |->  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
)  e. MblFn )
197160an32s 779 . . . 4  |-  ( ( ( ph  /\  i  e.  Z )  /\  x  e.  A )  ->  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  e.  RR )
198197anasss 628 . . 3  |-  ( (
ph  /\  ( i  e.  Z  /\  x  e.  A ) )  ->  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )  e.  RR )
1992limsuple 11968 . . . . . . . 8  |-  ( ( Z  C_  RR  /\  (
n  e.  Z  |->  B ) : Z --> RR*  /\  ( limsup `
 ( n  e.  Z  |->  B ) )  e.  RR* )  ->  (
( limsup `  ( n  e.  Z  |->  B ) )  <_  ( limsup `  ( n  e.  Z  |->  B ) )  <->  A. i  e.  RR  ( limsup `  (
n  e.  Z  |->  B ) )  <_  ( H `  i )
) )
20012, 50, 51, 199syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( limsup `  ( n  e.  Z  |->  B ) )  <_  ( limsup `  ( n  e.  Z  |->  B ) )  <->  A. i  e.  RR  ( limsup `  (
n  e.  Z  |->  B ) )  <_  ( H `  i )
) )
20148, 200mpbid 201 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A. i  e.  RR  ( limsup `  (
n  e.  Z  |->  B ) )  <_  ( H `  i )
)
202 ssralv 3250 . . . . . 6  |-  ( Z 
C_  RR  ->  ( A. i  e.  RR  ( limsup `
 ( n  e.  Z  |->  B ) )  <_  ( H `  i )  ->  A. i  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
( H `  i
) ) )
20311, 201, 202mpsyl 59 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. i  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_ 
( H `  i
) )
204169breq2d 4051 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  Z )  ->  (
( limsup `  ( n  e.  Z  |->  B ) )  <_  ( H `  i )  <->  ( limsup `  ( n  e.  Z  |->  B ) )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
) )
205204ralbidva 2572 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( A. i  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_  ( H `  i )  <->  A. i  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
) )
206203, 205mpbid 201 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  A. i  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
)
207 breq1 4042 . . . . . 6  |-  ( y  =  ( limsup `  (
n  e.  Z  |->  B ) )  ->  (
y  <_  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <->  ( limsup `  (
n  e.  Z  |->  B ) )  <_  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
208207ralbidv 2576 . . . . 5  |-  ( y  =  ( limsup `  (
n  e.  Z  |->  B ) )  ->  ( A. i  e.  Z  y  <_  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  )  <->  A. i  e.  Z  ( limsup `  ( n  e.  Z  |->  B ) )  <_  sup ( ran  ( n  e.  (
ZZ>= `  i )  |->  B ) ,  RR ,  <  ) ) )
209208rspcev 2897 . . . 4  |-  ( ( ( limsup `  ( n  e.  Z  |->  B ) )  e.  RR  /\  A. i  e.  Z  (
limsup `  ( n  e.  Z  |->  B ) )  <_  sup ( ran  (
n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )  ->  E. y  e.  RR  A. i  e.  Z  y  <_  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )
21024, 206, 209syl2anc 642 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  RR  A. i  e.  Z  y  <_  sup ( ran  ( n  e.  ( ZZ>= `  i )  |->  B ) ,  RR ,  <  ) )
2113, 178, 13, 196, 198, 210mbfinf 19036 . 2  |-  ( ph  ->  ( x  e.  A  |->  sup ( ran  (
i  e.  Z  |->  sup ( ran  ( n  e.  ( ZZ>= `  i
)  |->  B ) ,  RR ,  <  )
) ,  RR ,  `'  <  ) )  e. MblFn
)
212177, 211eqeltrd 2370 1  |-  ( ph  ->  G  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752    +oocpnf 8880   RR*cxr 8882    < clt 8883    <_ cle 8884   ZZcz 10040   ZZ>=cuz 10246   [,)cico 10674   limsupclsp 11960  MblFncmbf 18985
This theorem is referenced by:  mbflimlem  19038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xadd 10469  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-xmet 16389  df-met 16390  df-ovol 18840  df-vol 18841  df-mbf 18991
  Copyright terms: Public domain W3C validator