MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfss Unicode version

Theorem mbfss 19001
Description: Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfss.1  |-  ( ph  ->  A  C_  B )
mbfss.2  |-  ( ph  ->  B  e.  dom  vol )
mbfss.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
mbfss.4  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
mbfss.5  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
Assertion
Ref Expression
mbfss  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    V( x)

Proof of Theorem mbfss
StepHypRef Expression
1 elun 3316 . . . . . . . 8  |-  ( x  e.  ( A  u.  ( B  \  A ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  A
) ) )
2 undif2 3530 . . . . . . . . . 10  |-  ( A  u.  ( B  \  A ) )  =  ( A  u.  B
)
3 mbfss.1 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  B )
4 ssequn1 3345 . . . . . . . . . . 11  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
53, 4sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( A  u.  B
)  =  B )
62, 5syl5eq 2327 . . . . . . . . 9  |-  ( ph  ->  ( A  u.  ( B  \  A ) )  =  B )
76eleq2d 2350 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A  u.  ( B 
\  A ) )  <-> 
x  e.  B ) )
81, 7syl5bbr 250 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  \/  x  e.  ( B  \  A
) )  <->  x  e.  B ) )
98biimpar 471 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  A  \/  x  e.  ( B  \  A ) ) )
10 mbfss.5 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
11 mbfss.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
1210, 11mbfmptcl 18992 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
13 mbfss.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
14 0cn 8831 . . . . . . . 8  |-  0  e.  CC
1513, 14syl6eqel 2371 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  CC )
1612, 15jaodan 760 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  \/  x  e.  ( B  \  A
) ) )  ->  C  e.  CC )
179, 16syldan 456 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
1817recld 11679 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  C )  e.  RR )
19 eqid 2283 . . . 4  |-  ( x  e.  B  |->  ( Re
`  C ) )  =  ( x  e.  B  |->  ( Re `  C ) )
2018, 19fmptd 5684 . . 3  |-  ( ph  ->  ( x  e.  B  |->  ( Re `  C
) ) : B --> RR )
21 resmpt 5000 . . . . 5  |-  ( A 
C_  B  ->  (
( x  e.  B  |->  ( Re `  C
) )  |`  A )  =  ( x  e.  A  |->  ( Re `  C ) ) )
223, 21syl 15 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  ( Re `  C ) )  |`  A )  =  ( x  e.  A  |->  ( Re `  C ) ) )
2312ismbfcn2 18994 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  C
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  C ) )  e. MblFn ) ) )
2410, 23mpbid 201 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  C ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
)
2524simpld 445 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e. MblFn )
2622, 25eqeltrd 2357 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  ( Re `  C ) )  |`  A )  e. MblFn )
27 difss 3303 . . . . . 6  |-  ( B 
\  A )  C_  B
28 resmpt 5000 . . . . . 6  |-  ( ( B  \  A ) 
C_  B  ->  (
( x  e.  B  |->  ( Re `  C
) )  |`  ( B  \  A ) )  =  ( x  e.  ( B  \  A
)  |->  ( Re `  C ) ) )
2927, 28ax-mp 8 . . . . 5  |-  ( ( x  e.  B  |->  ( Re `  C ) )  |`  ( B  \  A ) )  =  ( x  e.  ( B  \  A ) 
|->  ( Re `  C
) )
3013fveq2d 5529 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( Re `  C )  =  ( Re `  0 ) )
31 re0 11637 . . . . . . 7  |-  ( Re
`  0 )  =  0
3230, 31syl6eq 2331 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( Re `  C )  =  0 )
3332mpteq2dva 4106 . . . . 5  |-  ( ph  ->  ( x  e.  ( B  \  A ) 
|->  ( Re `  C
) )  =  ( x  e.  ( B 
\  A )  |->  0 ) )
3429, 33syl5eq 2327 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  ( Re `  C ) )  |`  ( B  \  A ) )  =  ( x  e.  ( B  \  A )  |->  0 ) )
35 fconstmpt 4732 . . . . 5  |-  ( ( B  \  A )  X.  { 0 } )  =  ( x  e.  ( B  \  A )  |->  0 )
36 mbfss.2 . . . . . . 7  |-  ( ph  ->  B  e.  dom  vol )
3710, 11mbfdm2 18993 . . . . . . 7  |-  ( ph  ->  A  e.  dom  vol )
38 difmbl 18900 . . . . . . 7  |-  ( ( B  e.  dom  vol  /\  A  e.  dom  vol )  ->  ( B  \  A )  e.  dom  vol )
3936, 37, 38syl2anc 642 . . . . . 6  |-  ( ph  ->  ( B  \  A
)  e.  dom  vol )
40 mbfconst 18990 . . . . . 6  |-  ( ( ( B  \  A
)  e.  dom  vol  /\  0  e.  CC )  ->  ( ( B 
\  A )  X. 
{ 0 } )  e. MblFn )
4139, 14, 40sylancl 643 . . . . 5  |-  ( ph  ->  ( ( B  \  A )  X.  {
0 } )  e. MblFn
)
4235, 41syl5eqelr 2368 . . . 4  |-  ( ph  ->  ( x  e.  ( B  \  A ) 
|->  0 )  e. MblFn )
4334, 42eqeltrd 2357 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  ( Re `  C ) )  |`  ( B  \  A ) )  e. MblFn )
4420, 26, 43, 6mbfres2 19000 . 2  |-  ( ph  ->  ( x  e.  B  |->  ( Re `  C
) )  e. MblFn )
4517imcld 11680 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Im `  C )  e.  RR )
46 eqid 2283 . . . 4  |-  ( x  e.  B  |->  ( Im
`  C ) )  =  ( x  e.  B  |->  ( Im `  C ) )
4745, 46fmptd 5684 . . 3  |-  ( ph  ->  ( x  e.  B  |->  ( Im `  C
) ) : B --> RR )
48 resmpt 5000 . . . . 5  |-  ( A 
C_  B  ->  (
( x  e.  B  |->  ( Im `  C
) )  |`  A )  =  ( x  e.  A  |->  ( Im `  C ) ) )
493, 48syl 15 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  ( Im `  C ) )  |`  A )  =  ( x  e.  A  |->  ( Im `  C ) ) )
5024simprd 449 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
5149, 50eqeltrd 2357 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  ( Im `  C ) )  |`  A )  e. MblFn )
52 resmpt 5000 . . . . . 6  |-  ( ( B  \  A ) 
C_  B  ->  (
( x  e.  B  |->  ( Im `  C
) )  |`  ( B  \  A ) )  =  ( x  e.  ( B  \  A
)  |->  ( Im `  C ) ) )
5327, 52ax-mp 8 . . . . 5  |-  ( ( x  e.  B  |->  ( Im `  C ) )  |`  ( B  \  A ) )  =  ( x  e.  ( B  \  A ) 
|->  ( Im `  C
) )
5413fveq2d 5529 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( Im `  C )  =  ( Im `  0 ) )
55 im0 11638 . . . . . . 7  |-  ( Im
`  0 )  =  0
5654, 55syl6eq 2331 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( Im `  C )  =  0 )
5756mpteq2dva 4106 . . . . 5  |-  ( ph  ->  ( x  e.  ( B  \  A ) 
|->  ( Im `  C
) )  =  ( x  e.  ( B 
\  A )  |->  0 ) )
5853, 57syl5eq 2327 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  ( Im `  C ) )  |`  ( B  \  A ) )  =  ( x  e.  ( B  \  A )  |->  0 ) )
5958, 42eqeltrd 2357 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  ( Im `  C ) )  |`  ( B  \  A ) )  e. MblFn )
6047, 51, 59, 6mbfres2 19000 . 2  |-  ( ph  ->  ( x  e.  B  |->  ( Im `  C
) )  e. MblFn )
6117ismbfcn2 18994 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( ( x  e.  B  |->  ( Re `  C
) )  e. MblFn  /\  (
x  e.  B  |->  ( Im `  C ) )  e. MblFn ) ) )
6244, 60, 61mpbir2and 888 1  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    \ cdif 3149    u. cun 3150    C_ wss 3152   {csn 3640    e. cmpt 4077    X. cxp 4687   dom cdm 4689    |` cres 4691   ` cfv 5255   CCcc 8735   RRcr 8736   0cc0 8737   Recre 11582   Imcim 11583   volcvol 18823  MblFncmbf 18969
This theorem is referenced by:  mbfi1flim  19078  itg2cnlem1  19116  iblss2  19160  ibladdlem  19174  itgaddlem1  19177  iblabslem  19182  itggt0  19196  itgcn  19197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xadd 10453  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-xmet 16373  df-met 16374  df-ovol 18824  df-vol 18825  df-mbf 18975
  Copyright terms: Public domain W3C validator