MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsub Unicode version

Theorem mbfsub 19422
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfadd.1  |-  ( ph  ->  F  e. MblFn )
mbfadd.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfsub  |-  ( ph  ->  ( F  o F  -  G )  e. MblFn
)

Proof of Theorem mbfsub
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . . . . 8  |-  ( ph  ->  F  e. MblFn )
2 mbff 19387 . . . . . . . 8  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  F : dom  F --> CC )
4 elin 3474 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
54simplbi 447 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
6 ffvelrn 5808 . . . . . . 7  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
73, 5, 6syl2an 464 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
8 mbfadd.2 . . . . . . . 8  |-  ( ph  ->  G  e. MblFn )
9 mbff 19387 . . . . . . . 8  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
108, 9syl 16 . . . . . . 7  |-  ( ph  ->  G : dom  G --> CC )
114simprbi 451 . . . . . . 7  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
12 ffvelrn 5808 . . . . . . 7  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
1310, 11, 12syl2an 464 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
147, 13negsubd 9350 . . . . 5  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  +  -u ( G `  x )
)  =  ( ( F `  x )  -  ( G `  x ) ) )
1514eqcomd 2393 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  -  ( G `
 x ) )  =  ( ( F `
 x )  + 
-u ( G `  x ) ) )
1615mpteq2dva 4237 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  -  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x )  +  -u ( G `  x ) ) ) )
17 ffn 5532 . . . . 5  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
183, 17syl 16 . . . 4  |-  ( ph  ->  F  Fn  dom  F
)
19 ffn 5532 . . . . 5  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
2010, 19syl 16 . . . 4  |-  ( ph  ->  G  Fn  dom  G
)
21 mbfdm 19388 . . . . 5  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
221, 21syl 16 . . . 4  |-  ( ph  ->  dom  F  e.  dom  vol )
23 mbfdm 19388 . . . . 5  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
248, 23syl 16 . . . 4  |-  ( ph  ->  dom  G  e.  dom  vol )
25 eqid 2388 . . . 4  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
26 eqidd 2389 . . . 4  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
27 eqidd 2389 . . . 4  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
2818, 20, 22, 24, 25, 26, 27offval 6252 . . 3  |-  ( ph  ->  ( F  o F  -  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  -  ( G `  x ) ) ) )
29 inmbl 19304 . . . . 5  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
3022, 24, 29syl2anc 643 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
3113negcld 9331 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  -u ( G `  x )  e.  CC )
32 eqidd 2389 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
33 eqidd 2389 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) ) )
3430, 7, 31, 32, 33offval2 6262 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  o F  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  +  -u ( G `  x ) ) ) )
3516, 28, 343eqtr4d 2430 . 2  |-  ( ph  ->  ( F  o F  -  G )  =  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  o F  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) ) )
36 inss1 3505 . . . . 5  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
37 resmpt 5132 . . . . 5  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
3836, 37mp1i 12 . . . 4  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
393feqmptd 5719 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
4039, 1eqeltrrd 2463 . . . . 5  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
41 mbfres 19404 . . . . 5  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
4240, 30, 41syl2anc 643 . . . 4  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
4338, 42eqeltrrd 2463 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
44 inss2 3506 . . . . . 6  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
45 resmpt 5132 . . . . . 6  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4644, 45mp1i 12 . . . . 5  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4710feqmptd 5719 . . . . . . 7  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
4847, 8eqeltrrd 2463 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
49 mbfres 19404 . . . . . 6  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5048, 30, 49syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5146, 50eqeltrrd 2463 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
5213, 51mbfneg 19410 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  -u ( G `  x ) )  e. MblFn
)
5343, 52mbfadd 19421 . 2  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  o F  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  -u ( G `  x ) ) )  e. MblFn )
5435, 53eqeltrd 2462 1  |-  ( ph  ->  ( F  o F  -  G )  e. MblFn
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    i^i cin 3263    C_ wss 3264    e. cmpt 4208   dom cdm 4819    |` cres 4821    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021    o Fcof 6243   CCcc 8922    + caddc 8927    - cmin 9224   -ucneg 9225   volcvol 19228  MblFncmbf 19374
This theorem is referenced by:  mbfmul  19486  iblulm  20191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-omul 6666  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-acn 7763  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xadd 10644  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-rlim 12211  df-sum 12408  df-xmet 16620  df-met 16621  df-ovol 19229  df-vol 19230  df-mbf 19380
  Copyright terms: Public domain W3C validator