HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr Unicode version

Theorem mdbr 23645
Description: Binary relation expressing  <. A ,  B >. is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem mdbr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2447 . . . . 5  |-  ( y  =  A  ->  (
y  e.  CH  <->  A  e.  CH ) )
21anbi1d 686 . . . 4  |-  ( y  =  A  ->  (
( y  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  z  e.  CH )
) )
3 oveq2 6028 . . . . . . . 8  |-  ( y  =  A  ->  (
x  vH  y )  =  ( x  vH  A ) )
43ineq1d 3484 . . . . . . 7  |-  ( y  =  A  ->  (
( x  vH  y
)  i^i  z )  =  ( ( x  vH  A )  i^i  z ) )
5 ineq1 3478 . . . . . . . 8  |-  ( y  =  A  ->  (
y  i^i  z )  =  ( A  i^i  z ) )
65oveq2d 6036 . . . . . . 7  |-  ( y  =  A  ->  (
x  vH  ( y  i^i  z ) )  =  ( x  vH  ( A  i^i  z ) ) )
74, 6eqeq12d 2401 . . . . . 6  |-  ( y  =  A  ->  (
( ( x  vH  y )  i^i  z
)  =  ( x  vH  ( y  i^i  z ) )  <->  ( (
x  vH  A )  i^i  z )  =  ( x  vH  ( A  i^i  z ) ) ) )
87imbi2d 308 . . . . 5  |-  ( y  =  A  ->  (
( x  C_  z  ->  ( ( x  vH  y )  i^i  z
)  =  ( x  vH  ( y  i^i  z ) ) )  <-> 
( x  C_  z  ->  ( ( x  vH  A )  i^i  z
)  =  ( x  vH  ( A  i^i  z ) ) ) ) )
98ralbidv 2669 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  CH  (
x  C_  z  ->  ( ( x  vH  y
)  i^i  z )  =  ( x  vH  ( y  i^i  z
) ) )  <->  A. x  e.  CH  ( x  C_  z  ->  ( ( x  vH  A )  i^i  z )  =  ( x  vH  ( A  i^i  z ) ) ) ) )
102, 9anbi12d 692 . . 3  |-  ( y  =  A  ->  (
( ( y  e. 
CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x  C_  z  ->  ( ( x  vH  y )  i^i  z )  =  ( x  vH  ( y  i^i  z ) ) ) )  <->  ( ( A  e.  CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x 
C_  z  ->  (
( x  vH  A
)  i^i  z )  =  ( x  vH  ( A  i^i  z
) ) ) ) ) )
11 eleq1 2447 . . . . 5  |-  ( z  =  B  ->  (
z  e.  CH  <->  B  e.  CH ) )
1211anbi2d 685 . . . 4  |-  ( z  =  B  ->  (
( A  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
13 sseq2 3313 . . . . . 6  |-  ( z  =  B  ->  (
x  C_  z  <->  x  C_  B
) )
14 ineq2 3479 . . . . . . 7  |-  ( z  =  B  ->  (
( x  vH  A
)  i^i  z )  =  ( ( x  vH  A )  i^i 
B ) )
15 ineq2 3479 . . . . . . . 8  |-  ( z  =  B  ->  ( A  i^i  z )  =  ( A  i^i  B
) )
1615oveq2d 6036 . . . . . . 7  |-  ( z  =  B  ->  (
x  vH  ( A  i^i  z ) )  =  ( x  vH  ( A  i^i  B ) ) )
1714, 16eqeq12d 2401 . . . . . 6  |-  ( z  =  B  ->  (
( ( x  vH  A )  i^i  z
)  =  ( x  vH  ( A  i^i  z ) )  <->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) )
1813, 17imbi12d 312 . . . . 5  |-  ( z  =  B  ->  (
( x  C_  z  ->  ( ( x  vH  A )  i^i  z
)  =  ( x  vH  ( A  i^i  z ) ) )  <-> 
( x  C_  B  ->  ( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
1918ralbidv 2669 . . . 4  |-  ( z  =  B  ->  ( A. x  e.  CH  (
x  C_  z  ->  ( ( x  vH  A
)  i^i  z )  =  ( x  vH  ( A  i^i  z
) ) )  <->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  A )  i^i 
B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
2012, 19anbi12d 692 . . 3  |-  ( z  =  B  ->  (
( ( A  e. 
CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x  C_  z  ->  ( ( x  vH  A )  i^i  z )  =  ( x  vH  ( A  i^i  z ) ) ) )  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A. x  e.  CH  ( x 
C_  B  ->  (
( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) ) )
21 df-md 23631 . . 3  |-  MH  =  { <. y ,  z
>.  |  ( (
y  e.  CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( x  C_  z  -> 
( ( x  vH  y )  i^i  z
)  =  ( x  vH  ( y  i^i  z ) ) ) ) }
2210, 20, 21brabg 4415 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A. x  e.  CH  ( x  C_  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) ) )
2322bianabs 851 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649    i^i cin 3262    C_ wss 3263   class class class wbr 4153  (class class class)co 6020   CHcch 22280    vH chj 22284    MH cmd 22317
This theorem is referenced by:  mdi  23646  mdbr2  23647  mdbr3  23648  dmdmd  23651  mddmd2  23660  mdsl1i  23672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-iota 5358  df-fv 5402  df-ov 6023  df-md 23631
  Copyright terms: Public domain W3C validator