HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Unicode version

Theorem mddmd2 22885
Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A  MH*  x ) )
Distinct variable group:    x, A

Proof of Theorem mddmd2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4028 . . . . 5  |-  ( x  =  y  ->  ( A  MH  x  <->  A  MH  y ) )
21cbvralv 2765 . . . 4  |-  ( A. x  e.  CH  A  MH  x 
<-> 
A. y  e.  CH  A  MH  y )
3 mdbr 22870 . . . . . 6  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  MH  y  <->  A. x  e.  CH  (
x  C_  y  ->  ( ( x  vH  A
)  i^i  y )  =  ( x  vH  ( A  i^i  y
) ) ) ) )
4 incom 3362 . . . . . . . . . . . 12  |-  ( ( A  vH  x )  i^i  y )  =  ( y  i^i  ( A  vH  x ) )
5 chjcom 22081 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  =  ( x  vH  A ) )
65ineq1d 3370 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( ( A  vH  x )  i^i  y
)  =  ( ( x  vH  A )  i^i  y ) )
74, 6syl5reqr 2331 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( ( x  vH  A )  i^i  y
)  =  ( y  i^i  ( A  vH  x ) ) )
87adantlr 695 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( x  vH  A )  i^i  y
)  =  ( y  i^i  ( A  vH  x ) ) )
9 incom 3362 . . . . . . . . . . . 12  |-  ( A  i^i  y )  =  ( y  i^i  A
)
109oveq1i 5830 . . . . . . . . . . 11  |-  ( ( A  i^i  y )  vH  x )  =  ( ( y  i^i 
A )  vH  x
)
11 chincl 22074 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  i^i  y
)  e.  CH )
12 chjcom 22081 . . . . . . . . . . . 12  |-  ( ( ( A  i^i  y
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  y )  vH  x
)  =  ( x  vH  ( A  i^i  y ) ) )
1311, 12sylan 457 . . . . . . . . . . 11  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( A  i^i  y )  vH  x
)  =  ( x  vH  ( A  i^i  y ) ) )
1410, 13syl5reqr 2331 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( x  vH  ( A  i^i  y ) )  =  ( ( y  i^i  A )  vH  x ) )
158, 14eqeq12d 2298 . . . . . . . . 9  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) )  <-> 
( y  i^i  ( A  vH  x ) )  =  ( ( y  i^i  A )  vH  x ) ) )
16 eqcom 2286 . . . . . . . . 9  |-  ( ( y  i^i  ( A  vH  x ) )  =  ( ( y  i^i  A )  vH  x )  <->  ( (
y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) )
1715, 16syl6bb 252 . . . . . . . 8  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) )  <-> 
( ( y  i^i 
A )  vH  x
)  =  ( y  i^i  ( A  vH  x ) ) ) )
1817imbi2d 307 . . . . . . 7  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( x  C_  y  ->  ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) ) )  <->  ( x  C_  y  ->  ( ( y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) ) ) )
1918ralbidva 2560 . . . . . 6  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A. x  e. 
CH  ( x  C_  y  ->  ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) ) )  <->  A. x  e.  CH  ( x  C_  y  -> 
( ( y  i^i 
A )  vH  x
)  =  ( y  i^i  ( A  vH  x ) ) ) ) )
203, 19bitrd 244 . . . . 5  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  MH  y  <->  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2120ralbidva 2560 . . . 4  |-  ( A  e.  CH  ->  ( A. y  e.  CH  A  MH  y  <->  A. y  e.  CH  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
222, 21syl5bb 248 . . 3  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. y  e.  CH  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
23 ralcom 2701 . . 3  |-  ( A. y  e.  CH  A. x  e.  CH  ( x  C_  y  ->  ( ( y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) )  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) )
2422, 23syl6bb 252 . 2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
25 dmdbr 22875 . . 3  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  MH*  x  <->  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2625ralbidva 2560 . 2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH*  x  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2724, 26bitr4d 247 1  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A  MH*  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544    i^i cin 3152    C_ wss 3153   class class class wbr 4024  (class class class)co 5820   CHcch 21505    vH chj 21509    MH cmd 21542    MH* cdmd 21543
This theorem is referenced by:  atmd  22975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-i2m1 8801  ax-1ne0 8802  ax-rrecex 8805  ax-cnre 8806  ax-hilex 21575  ax-hfvadd 21576  ax-hv0cl 21579  ax-hfvmul 21581
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-map 6770  df-nn 9743  df-hlim 21548  df-sh 21782  df-ch 21797  df-chj 21885  df-md 22856  df-dmd 22857
  Copyright terms: Public domain W3C validator