MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Unicode version

Theorem mdegmullem 19679
Description: Lemma for mdegmulle2 19680. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y  |-  Y  =  ( I mPoly  R )
mdegaddle.d  |-  D  =  ( I mDeg  R )
mdegaddle.i  |-  ( ph  ->  I  e.  V )
mdegaddle.r  |-  ( ph  ->  R  e.  Ring )
mdegmulle2.b  |-  B  =  ( Base `  Y
)
mdegmulle2.t  |-  .x.  =  ( .r `  Y )
mdegmulle2.f  |-  ( ph  ->  F  e.  B )
mdegmulle2.g  |-  ( ph  ->  G  e.  B )
mdegmulle2.j1  |-  ( ph  ->  J  e.  NN0 )
mdegmulle2.k1  |-  ( ph  ->  K  e.  NN0 )
mdegmulle2.j2  |-  ( ph  ->  ( D `  F
)  <_  J )
mdegmulle2.k2  |-  ( ph  ->  ( D `  G
)  <_  K )
mdegmullem.a  |-  A  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
mdegmullem.h  |-  H  =  ( b  e.  A  |->  (fld 
gsumg  b ) )
Assertion
Ref Expression
mdegmullem  |-  ( ph  ->  ( D `  ( F  .x.  G ) )  <_  ( J  +  K ) )
Distinct variable groups:    I, a,
b    R, b    V, b    A, b
Allowed substitution hints:    ph( a, b)    A( a)    B( a, b)    D( a, b)    R( a)    .x. ( a, b)    F( a, b)    G( a, b)    H( a, b)    J( a, b)    K( a, b)    V( a)    Y( a, b)

Proof of Theorem mdegmullem
Dummy variables  c 
d  x  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8  |-  Y  =  ( I mPoly  R )
2 mdegmulle2.b . . . . . . . 8  |-  B  =  ( Base `  Y
)
3 eqid 2366 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
4 mdegmulle2.t . . . . . . . 8  |-  .x.  =  ( .r `  Y )
5 mdegmullem.a . . . . . . . 8  |-  A  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
6 mdegmulle2.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
7 mdegmulle2.g . . . . . . . 8  |-  ( ph  ->  G  e.  B )
81, 2, 3, 4, 5, 6, 7mplmul 16397 . . . . . . 7  |-  ( ph  ->  ( F  .x.  G
)  =  ( c  e.  A  |->  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) )
98fveq1d 5634 . . . . . 6  |-  ( ph  ->  ( ( F  .x.  G ) `  x
)  =  ( ( c  e.  A  |->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) `
 x ) )
109adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( ( F  .x.  G ) `  x
)  =  ( ( c  e.  A  |->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) `
 x ) )
11 breq2 4129 . . . . . . . . . 10  |-  ( c  =  x  ->  (
e  o R  <_ 
c  <->  e  o R  <_  x ) )
1211rabbidv 2865 . . . . . . . . 9  |-  ( c  =  x  ->  { e  e.  A  |  e  o R  <_  c }  =  { e  e.  A  |  e  o R  <_  x }
)
13 oveq1 5988 . . . . . . . . . . 11  |-  ( c  =  x  ->  (
c  o F  -  d )  =  ( x  o F  -  d ) )
1413fveq2d 5636 . . . . . . . . . 10  |-  ( c  =  x  ->  ( G `  ( c  o F  -  d
) )  =  ( G `  ( x  o F  -  d
) ) )
1514oveq2d 5997 . . . . . . . . 9  |-  ( c  =  x  ->  (
( F `  d
) ( .r `  R ) ( G `
 ( c  o F  -  d ) ) )  =  ( ( F `  d
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) ) )
1612, 15mpteq12dv 4200 . . . . . . . 8  |-  ( c  =  x  ->  (
d  e.  { e  e.  A  |  e  o R  <_  c }  |->  ( ( F `
 d ) ( .r `  R ) ( G `  (
c  o F  -  d ) ) ) )  =  ( d  e.  { e  e.  A  |  e  o R  <_  x }  |->  ( ( F `  d ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) ) ) )
1716oveq2d 5997 . . . . . . 7  |-  ( c  =  x  ->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) )  =  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) ) )
18 eqid 2366 . . . . . . 7  |-  ( c  e.  A  |->  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) )  =  ( c  e.  A  |->  ( R  gsumg  ( d  e.  { e  e.  A  |  e  o R  <_  c }  |->  ( ( F `  d ) ( .r
`  R ) ( G `  ( c  o F  -  d
) ) ) ) ) )
19 ovex 6006 . . . . . . 7  |-  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) )  e. 
_V
2017, 18, 19fvmpt 5709 . . . . . 6  |-  ( x  e.  A  ->  (
( c  e.  A  |->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) `
 x )  =  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) ) )
2120ad2antrl 708 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( ( c  e.  A  |->  ( R  gsumg  ( d  e.  { e  e.  A  |  e  o R  <_  c }  |->  ( ( F `  d ) ( .r
`  R ) ( G `  ( c  o F  -  d
) ) ) ) ) ) `  x
)  =  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) ) )
22 mdegaddle.d . . . . . . . . . . . . 13  |-  D  =  ( I mDeg  R )
23 eqid 2366 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  =  ( 0g `  R
)
24 mdegmullem.h . . . . . . . . . . . . 13  |-  H  =  ( b  e.  A  |->  (fld 
gsumg  b ) )
256ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  ->  F  e.  B )
26 ssrab2 3344 . . . . . . . . . . . . . . . 16  |-  { e  e.  A  |  e  o R  <_  x }  C_  A
2726sseli 3262 . . . . . . . . . . . . . . 15  |-  ( d  e.  { e  e.  A  |  e  o R  <_  x }  ->  d  e.  A )
2827adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  d  e.  A )
2928adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
d  e.  A )
3022, 1, 2mdegxrcl 19668 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  B  ->  ( D `  F )  e.  RR* )
316, 30syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  F
)  e.  RR* )
3231ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  F )  e.  RR* )
33 nn0ssre 10118 . . . . . . . . . . . . . . . . . . 19  |-  NN0  C_  RR
34 ressxr 9023 . . . . . . . . . . . . . . . . . . 19  |-  RR  C_  RR*
3533, 34sstri 3274 . . . . . . . . . . . . . . . . . 18  |-  NN0  C_  RR*
36 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  J  e.  NN0 )
3735, 36sseldi 3264 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  J  e.  RR* )
3837ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  J  e.  RR* )
39 mdegaddle.i . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  I  e.  V )
405, 24tdeglem1 19659 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  V  ->  H : A --> NN0 )
4139, 40syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  H : A --> NN0 )
4241ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  H : A --> NN0 )
43 ffvelrn 5770 . . . . . . . . . . . . . . . . . 18  |-  ( ( H : A --> NN0  /\  d  e.  A )  ->  ( H `  d
)  e.  NN0 )
4442, 28, 43syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  d )  e.  NN0 )
4535, 44sseldi 3264 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  d )  e.  RR* )
4632, 38, 453jca 1133 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( D `  F
)  e.  RR*  /\  J  e.  RR*  /\  ( H `
 d )  e. 
RR* ) )
4746adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( D `  F )  e.  RR*  /\  J  e.  RR*  /\  ( H `  d )  e.  RR* ) )
48 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  F
)  <_  J )
4948ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  F )  <_  J )
5049anim1i 551 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  J  <  ( H `  d
) )  ->  (
( D `  F
)  <_  J  /\  J  <  ( H `  d ) ) )
5150anasss 628 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( D `  F )  <_  J  /\  J  <  ( H `
 d ) ) )
52 xrlelttr 10639 . . . . . . . . . . . . . 14  |-  ( ( ( D `  F
)  e.  RR*  /\  J  e.  RR*  /\  ( H `
 d )  e. 
RR* )  ->  (
( ( D `  F )  <_  J  /\  J  <  ( H `
 d ) )  ->  ( D `  F )  <  ( H `  d )
) )
5347, 51, 52sylc 56 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( D `  F
)  <  ( H `  d ) )
5422, 1, 2, 23, 5, 24, 25, 29, 53mdeglt 19666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( F `  d
)  =  ( 0g
`  R ) )
5554oveq1d 5996 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( F `  d ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) )  =  ( ( 0g `  R ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) ) )
56 mdegaddle.r . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
5756ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  R  e.  Ring )
58 eqid 2366 . . . . . . . . . . . . . . . 16  |-  ( Base `  R )  =  (
Base `  R )
591, 58, 2, 5, 7mplelf 16388 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G : A --> ( Base `  R ) )
6059ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  G : A --> ( Base `  R
) )
6139ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  I  e.  V )
62 simplrl 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  x  e.  A )
63 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  d  e.  { e  e.  A  |  e  o R  <_  x } )
64 eqid 2366 . . . . . . . . . . . . . . . . 17  |-  { e  e.  A  |  e  o R  <_  x }  =  { e  e.  A  |  e  o R  <_  x }
655, 64psrbagconcl 16329 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  x  e.  A  /\  d  e.  { e  e.  A  |  e  o R  <_  x }
)  ->  ( x  o F  -  d
)  e.  { e  e.  A  |  e  o R  <_  x } )
6661, 62, 63, 65syl3anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
x  o F  -  d )  e.  {
e  e.  A  | 
e  o R  <_  x } )
6726, 66sseldi 3264 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
x  o F  -  d )  e.  A
)
68 ffvelrn 5770 . . . . . . . . . . . . . 14  |-  ( ( G : A --> ( Base `  R )  /\  (
x  o F  -  d )  e.  A
)  ->  ( G `  ( x  o F  -  d ) )  e.  ( Base `  R
) )
6960, 67, 68syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( G `  ( x  o F  -  d
) )  e.  (
Base `  R )
)
7058, 3, 23rnglz 15587 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  ( G `  ( x  o F  -  d
) )  e.  (
Base `  R )
)  ->  ( ( 0g `  R ) ( .r `  R ) ( G `  (
x  o F  -  d ) ) )  =  ( 0g `  R ) )
7157, 69, 70syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( 0g `  R
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) )  =  ( 0g `  R ) )
7271adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( 0g `  R ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) )  =  ( 0g `  R
) )
7355, 72eqtrd 2398 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( F `  d ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) )  =  ( 0g `  R
) )
7473anassrs 629 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  J  <  ( H `  d
) )  ->  (
( F `  d
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) )  =  ( 0g `  R ) )
757ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  G  e.  B )
7667adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( x  o F  -  d
)  e.  A )
7722, 1, 2mdegxrcl 19668 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  B  ->  ( D `  G )  e.  RR* )
787, 77syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  G
)  e.  RR* )
7978ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  G )  e.  RR* )
80 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  NN0 )
8135, 80sseldi 3264 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  RR* )
8281ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  K  e.  RR* )
83 ffvelrn 5770 . . . . . . . . . . . . . . . . . 18  |-  ( ( H : A --> NN0  /\  ( x  o F  -  d )  e.  A )  ->  ( H `  ( x  o F  -  d
) )  e.  NN0 )
8442, 67, 83syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( x  o F  -  d
) )  e.  NN0 )
8535, 84sseldi 3264 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( x  o F  -  d
) )  e.  RR* )
8679, 82, 853jca 1133 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( D `  G
)  e.  RR*  /\  K  e.  RR*  /\  ( H `
 ( x  o F  -  d ) )  e.  RR* )
)
8786adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( D `  G )  e.  RR*  /\  K  e. 
RR*  /\  ( H `  ( x  o F  -  d ) )  e.  RR* ) )
88 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  G
)  <_  K )
8988ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  G )  <_  K )
9089anim1i 551 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  K  <  ( H `  (
x  o F  -  d ) ) )  ->  ( ( D `
 G )  <_  K  /\  K  <  ( H `  ( x  o F  -  d
) ) ) )
9190anasss 628 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( D `  G )  <_  K  /\  K  < 
( H `  (
x  o F  -  d ) ) ) )
92 xrlelttr 10639 . . . . . . . . . . . . . 14  |-  ( ( ( D `  G
)  e.  RR*  /\  K  e.  RR*  /\  ( H `
 ( x  o F  -  d ) )  e.  RR* )  ->  ( ( ( D `
 G )  <_  K  /\  K  <  ( H `  ( x  o F  -  d
) ) )  -> 
( D `  G
)  <  ( H `  ( x  o F  -  d ) ) ) )
9387, 91, 92sylc 56 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( D `  G )  <  ( H `  ( x  o F  -  d
) ) )
9422, 1, 2, 23, 5, 24, 75, 76, 93mdeglt 19666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( G `  ( x  o F  -  d ) )  =  ( 0g `  R ) )
9594oveq2d 5997 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( F `  d )
( .r `  R
) ( G `  ( x  o F  -  d ) ) )  =  ( ( F `  d ) ( .r `  R
) ( 0g `  R ) ) )
961, 58, 2, 5, 6mplelf 16388 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : A --> ( Base `  R ) )
9796ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  F : A --> ( Base `  R
) )
98 ffvelrn 5770 . . . . . . . . . . . . . 14  |-  ( ( F : A --> ( Base `  R )  /\  d  e.  A )  ->  ( F `  d )  e.  ( Base `  R
) )
9997, 28, 98syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( F `  d )  e.  ( Base `  R
) )
10058, 3, 23rngrz 15588 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  ( F `  d )  e.  ( Base `  R
) )  ->  (
( F `  d
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
10157, 99, 100syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( F `  d
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
102101adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( F `  d )
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
10395, 102eqtrd 2398 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( F `  d )
( .r `  R
) ( G `  ( x  o F  -  d ) ) )  =  ( 0g
`  R ) )
104103anassrs 629 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  K  <  ( H `  (
x  o F  -  d ) ) )  ->  ( ( F `
 d ) ( .r `  R ) ( G `  (
x  o F  -  d ) ) )  =  ( 0g `  R ) )
105 simplrr 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  +  K )  <  ( H `  x
) )
10644nn0red 10168 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  d )  e.  RR )
10784nn0red 10168 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( x  o F  -  d
) )  e.  RR )
10836ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  J  e.  NN0 )
109108nn0red 10168 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  J  e.  RR )
11080ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  K  e.  NN0 )
111110nn0red 10168 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  K  e.  RR )
112 le2add 9403 . . . . . . . . . . . . 13  |-  ( ( ( ( H `  d )  e.  RR  /\  ( H `  (
x  o F  -  d ) )  e.  RR )  /\  ( J  e.  RR  /\  K  e.  RR ) )  -> 
( ( ( H `
 d )  <_  J  /\  ( H `  ( x  o F  -  d ) )  <_  K )  -> 
( ( H `  d )  +  ( H `  ( x  o F  -  d
) ) )  <_ 
( J  +  K
) ) )
113106, 107, 109, 111, 112syl22anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  ->  (
( H `  d
)  +  ( H `
 ( x  o F  -  d ) ) )  <_  ( J  +  K )
) )
1145, 24tdeglem3 19660 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  d  e.  A  /\  ( x  o F  -  d )  e.  A )  ->  ( H `  ( d  o F  +  (
x  o F  -  d ) ) )  =  ( ( H `
 d )  +  ( H `  (
x  o F  -  d ) ) ) )
11561, 28, 67, 114syl3anc 1183 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( d  o F  +  (
x  o F  -  d ) ) )  =  ( ( H `
 d )  +  ( H `  (
x  o F  -  d ) ) ) )
1165psrbagf 16323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  d  e.  A )  ->  d : I --> NN0 )
1171163adant3 976 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  d : I --> NN0 )
118 ffvelrn 5770 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d : I --> NN0  /\  b  e.  I )  ->  ( d `  b
)  e.  NN0 )
119117, 118sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
d `  b )  e.  NN0 )
120119nn0cnd 10169 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
d `  b )  e.  CC )
1215psrbagf 16323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  x  e.  A )  ->  x : I --> NN0 )
1221213adant2 975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  x : I --> NN0 )
123 ffvelrn 5770 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x : I --> NN0  /\  b  e.  I )  ->  ( x `  b
)  e.  NN0 )
124122, 123sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
x `  b )  e.  NN0 )
125124nn0cnd 10169 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
x `  b )  e.  CC )
126120, 125pncan3d 9307 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
( d `  b
)  +  ( ( x `  b )  -  ( d `  b ) ) )  =  ( x `  b ) )
127126mpteq2dva 4208 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( b  e.  I  |->  ( ( d `  b )  +  ( ( x `  b
)  -  ( d `
 b ) ) ) )  =  ( b  e.  I  |->  ( x `  b ) ) )
128 simp1 956 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  I  e.  V )
129 fvex 5646 . . . . . . . . . . . . . . . . . . 19  |-  ( d `
 b )  e. 
_V
130129a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
d `  b )  e.  _V )
131 ovex 6006 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x `  b )  -  ( d `  b ) )  e. 
_V
132131a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
( x `  b
)  -  ( d `
 b ) )  e.  _V )
133117feqmptd 5682 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  d  =  ( b  e.  I  |->  ( d `
 b ) ) )
134 fvex 5646 . . . . . . . . . . . . . . . . . . . 20  |-  ( x `
 b )  e. 
_V
135134a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
x `  b )  e.  _V )
136122feqmptd 5682 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  x  =  ( b  e.  I  |->  ( x `
 b ) ) )
137128, 135, 130, 136, 133offval2 6222 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( x  o F  -  d )  =  ( b  e.  I  |->  ( ( x `  b )  -  (
d `  b )
) ) )
138128, 130, 132, 133, 137offval2 6222 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( d  o F  +  ( x  o F  -  d ) )  =  ( b  e.  I  |->  ( ( d `  b )  +  ( ( x `
 b )  -  ( d `  b
) ) ) ) )
139127, 138, 1363eqtr4d 2408 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( d  o F  +  ( x  o F  -  d ) )  =  x )
14061, 28, 62, 139syl3anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
d  o F  +  ( x  o F  -  d ) )  =  x )
141140fveq2d 5636 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( d  o F  +  (
x  o F  -  d ) ) )  =  ( H `  x ) )
142115, 141eqtr3d 2400 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  d
)  +  ( H `
 ( x  o F  -  d ) ) )  =  ( H `  x ) )
143142breq1d 4135 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  +  ( H `  ( x  o F  -  d
) ) )  <_ 
( J  +  K
)  <->  ( H `  x )  <_  ( J  +  K )
) )
144113, 143sylibd 205 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  ->  ( H `  x )  <_  ( J  +  K
) ) )
145106, 109lenltd 9112 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  d
)  <_  J  <->  -.  J  <  ( H `  d
) ) )
146107, 111lenltd 9112 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  (
x  o F  -  d ) )  <_  K 
<->  -.  K  <  ( H `  ( x  o F  -  d
) ) ) )
147145, 146anbi12d 691 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  <->  ( -.  J  <  ( H `  d )  /\  -.  K  <  ( H `  ( x  o F  -  d ) ) ) ) )
148 ioran 476 . . . . . . . . . . . 12  |-  ( -.  ( J  <  ( H `  d )  \/  K  <  ( H `
 ( x  o F  -  d ) ) )  <->  ( -.  J  <  ( H `  d )  /\  -.  K  <  ( H `  ( x  o F  -  d ) ) ) )
149147, 148syl6bbr 254 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  <->  -.  ( J  <  ( H `  d )  \/  K  <  ( H `  (
x  o F  -  d ) ) ) ) )
150 ffvelrn 5770 . . . . . . . . . . . . . 14  |-  ( ( H : A --> NN0  /\  x  e.  A )  ->  ( H `  x
)  e.  NN0 )
15142, 62, 150syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  x )  e.  NN0 )
152151nn0red 10168 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  x )  e.  RR )
15336, 80nn0addcld 10171 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( J  +  K
)  e.  NN0 )
154153ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  +  K )  e.  NN0 )
155154nn0red 10168 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  +  K )  e.  RR )
156152, 155lenltd 9112 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  x
)  <_  ( J  +  K )  <->  -.  ( J  +  K )  <  ( H `  x
) ) )
157144, 149, 1563imtr3d 258 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( -.  ( J  <  ( H `  d )  \/  K  <  ( H `
 ( x  o F  -  d ) ) )  ->  -.  ( J  +  K
)  <  ( H `  x ) ) )
158105, 157mt4d 130 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  <  ( H `  d )  \/  K  <  ( H `  (
x  o F  -  d ) ) ) )
15974, 104, 158mpjaodan 761 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( F `  d
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) )  =  ( 0g `  R ) )
160159mpteq2dva 4208 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) )  =  ( d  e.  { e  e.  A  |  e  o R  <_  x }  |->  ( 0g `  R ) ) )
161160oveq2d 5997 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) )  =  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( 0g
`  R ) ) ) )
162 rngmnd 15560 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
16356, 162syl 15 . . . . . . . 8  |-  ( ph  ->  R  e.  Mnd )
164163adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  ->  R  e.  Mnd )
165 ovex 6006 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
166165rabex 4267 . . . . . . . . 9  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
1675, 166eqeltri 2436 . . . . . . . 8  |-  A  e. 
_V
168167rabex 4267 . . . . . . 7  |-  { e  e.  A  |  e  o R  <_  x }  e.  _V
16923gsumz 14668 . . . . . . 7  |-  ( ( R  e.  Mnd  /\  { e  e.  A  | 
e  o R  <_  x }  e.  _V )  ->  ( R  gsumg  ( d  e.  { e  e.  A  |  e  o R  <_  x }  |->  ( 0g `  R
) ) )  =  ( 0g `  R
) )
170164, 168, 169sylancl 643 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( 0g
`  R ) ) )  =  ( 0g
`  R ) )
171161, 170eqtrd 2398 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) )  =  ( 0g `  R
) )
17210, 21, 1713eqtrd 2402 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( ( F  .x.  G ) `  x
)  =  ( 0g
`  R ) )
173172expr 598 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( J  +  K
)  <  ( H `  x )  ->  (
( F  .x.  G
) `  x )  =  ( 0g `  R ) ) )
174173ralrimiva 2711 . 2  |-  ( ph  ->  A. x  e.  A  ( ( J  +  K )  <  ( H `  x )  ->  ( ( F  .x.  G ) `  x
)  =  ( 0g
`  R ) ) )
1751mplrng 16406 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  Y  e.  Ring )
17639, 56, 175syl2anc 642 . . . 4  |-  ( ph  ->  Y  e.  Ring )
1772, 4rngcl 15564 . . . 4  |-  ( ( Y  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .x.  G )  e.  B )
178176, 6, 7, 177syl3anc 1183 . . 3  |-  ( ph  ->  ( F  .x.  G
)  e.  B )
17935, 153sseldi 3264 . . 3  |-  ( ph  ->  ( J  +  K
)  e.  RR* )
18022, 1, 2, 23, 5, 24mdegleb 19665 . . 3  |-  ( ( ( F  .x.  G
)  e.  B  /\  ( J  +  K
)  e.  RR* )  ->  ( ( D `  ( F  .x.  G ) )  <_  ( J  +  K )  <->  A. x  e.  A  ( ( J  +  K )  <  ( H `  x
)  ->  ( ( F  .x.  G ) `  x )  =  ( 0g `  R ) ) ) )
181178, 179, 180syl2anc 642 . 2  |-  ( ph  ->  ( ( D `  ( F  .x.  G ) )  <_  ( J  +  K )  <->  A. x  e.  A  ( ( J  +  K )  <  ( H `  x
)  ->  ( ( F  .x.  G ) `  x )  =  ( 0g `  R ) ) ) )
182174, 181mpbird 223 1  |-  ( ph  ->  ( D `  ( F  .x.  G ) )  <_  ( J  +  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   {crab 2632   _Vcvv 2873   class class class wbr 4125    e. cmpt 4179   `'ccnv 4791   "cima 4795   -->wf 5354   ` cfv 5358  (class class class)co 5981    o Fcof 6203    o Rcofr 6204    ^m cmap 6915   Fincfn 7006   RRcr 8883    + caddc 8887   RR*cxr 9013    < clt 9014    <_ cle 9015    - cmin 9184   NNcn 9893   NN0cn0 10114   Basecbs 13356   .rcmulr 13417   0gc0g 13610    gsumg cgsu 13611   Mndcmnd 14571   Ringcrg 15547   mPoly cmpl 16299  ℂfldccnfld 16593   mDeg cmdg 19654
This theorem is referenced by:  mdegmulle2  19680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-ofr 6206  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-fzo 11026  df-seq 11211  df-hash 11506  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-0g 13614  df-gsum 13615  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-mhm 14625  df-submnd 14626  df-grp 14699  df-minusg 14700  df-mulg 14702  df-subg 14828  df-ghm 14891  df-cntz 15003  df-cmn 15301  df-abl 15302  df-mgp 15536  df-rng 15550  df-cring 15551  df-ur 15552  df-subrg 15753  df-psr 16308  df-mpl 16310  df-cnfld 16594  df-mdeg 19656
  Copyright terms: Public domain W3C validator