HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdexchi Structured version   Unicode version

Theorem mdexchi 23840
Description: An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdexch.1  |-  A  e. 
CH
mdexch.2  |-  B  e. 
CH
mdexch.3  |-  C  e. 
CH
Assertion
Ref Expression
mdexchi  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  MH  B  /\  ( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) ) )

Proof of Theorem mdexchi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mdexch.3 . . . . . . . . . . . . . . 15  |-  C  e. 
CH
2 mdexch.1 . . . . . . . . . . . . . . 15  |-  A  e. 
CH
3 chjass 23037 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CH  /\  A  e.  CH  /\  x  e.  CH )  ->  (
( C  vH  A
)  vH  x )  =  ( C  vH  ( A  vH  x
) ) )
41, 2, 3mp3an12 1270 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
( C  vH  A
)  vH  x )  =  ( C  vH  ( A  vH  x
) ) )
51, 2chjcli 22961 . . . . . . . . . . . . . . 15  |-  ( C  vH  A )  e. 
CH
6 chjcom 23010 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CH  /\  ( C  vH  A )  e.  CH )  -> 
( x  vH  ( C  vH  A ) )  =  ( ( C  vH  A )  vH  x ) )
75, 6mpan2 654 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  vH  ( C  vH  A ) )  =  ( ( C  vH  A )  vH  x
) )
8 chjcl 22861 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  e.  CH )
92, 8mpan 653 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  ( A  vH  x )  e. 
CH )
10 chjcom 23010 . . . . . . . . . . . . . . 15  |-  ( ( ( A  vH  x
)  e.  CH  /\  C  e.  CH )  ->  ( ( A  vH  x )  vH  C
)  =  ( C  vH  ( A  vH  x ) ) )
119, 1, 10sylancl 645 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  C )  =  ( C  vH  ( A  vH  x
) ) )
124, 7, 113eqtr4d 2480 . . . . . . . . . . . . 13  |-  ( x  e.  CH  ->  (
x  vH  ( C  vH  A ) )  =  ( ( A  vH  x )  vH  C
) )
1312ineq1d 3543 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( x  vH  ( C  vH  A ) )  i^i  B )  =  ( ( ( A  vH  x )  vH  C )  i^i  B
) )
14 inass 3553 . . . . . . . . . . . . 13  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( ( A  vH  x )  vH  C
)  i^i  ( ( A  vH  B )  i^i 
B ) )
15 incom 3535 . . . . . . . . . . . . . . 15  |-  ( ( A  vH  B )  i^i  B )  =  ( B  i^i  ( A  vH  B ) )
16 mdexch.2 . . . . . . . . . . . . . . . . . 18  |-  B  e. 
CH
172, 16chjcomi 22972 . . . . . . . . . . . . . . . . 17  |-  ( A  vH  B )  =  ( B  vH  A
)
1817ineq2i 3541 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( A  vH  B ) )  =  ( B  i^i  ( B  vH  A ) )
1916, 2chabs2i 23023 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( B  vH  A ) )  =  B
2018, 19eqtri 2458 . . . . . . . . . . . . . . 15  |-  ( B  i^i  ( A  vH  B ) )  =  B
2115, 20eqtri 2458 . . . . . . . . . . . . . 14  |-  ( ( A  vH  B )  i^i  B )  =  B
2221ineq2i 3541 . . . . . . . . . . . . 13  |-  ( ( ( A  vH  x
)  vH  C )  i^i  ( ( A  vH  B )  i^i  B
) )  =  ( ( ( A  vH  x )  vH  C
)  i^i  B )
2314, 22eqtri 2458 . . . . . . . . . . . 12  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( ( A  vH  x )  vH  C
)  i^i  B )
2413, 23syl6eqr 2488 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
( x  vH  ( C  vH  A ) )  i^i  B )  =  ( ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  i^i  B
) )
2524ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  =  ( ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B ) )  i^i  B ) )
26 chlej2 23015 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CH  /\  B  e.  CH  /\  A  e.  CH )  /\  x  C_  B )  ->  ( A  vH  x )  C_  ( A  vH  B ) )
2726ex 425 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CH  /\  B  e.  CH  /\  A  e.  CH )  ->  (
x  C_  B  ->  ( A  vH  x ) 
C_  ( A  vH  B ) ) )
2816, 2, 27mp3an23 1272 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( A  vH  x ) 
C_  ( A  vH  B ) ) )
292, 16chjcli 22961 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  B )  e. 
CH
30 mdi 23800 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  e.  CH  /\  ( A  vH  B
)  e.  CH  /\  ( A  vH  x
)  e.  CH )  /\  ( C  MH  ( A  vH  B )  /\  ( A  vH  x
)  C_  ( A  vH  B ) ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
3130exp32 590 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  CH  /\  ( A  vH  B )  e.  CH  /\  ( A  vH  x )  e. 
CH )  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
321, 29, 31mp3an12 1270 . . . . . . . . . . . . . . . . 17  |-  ( ( A  vH  x )  e.  CH  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
339, 32syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  ( C  MH  ( A  vH  B )  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3433com23 75 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( A  vH  x
)  C_  ( A  vH  B )  ->  ( C  MH  ( A  vH  B )  ->  (
( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3528, 34syld 43 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( C  MH  ( A  vH  B )  -> 
( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B ) )  =  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
3635imp31 423 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  C  MH  ( A  vH  B ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
3736adantrr 699 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  =  ( ( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) ) )
381, 29chincli 22964 . . . . . . . . . . . . . . . . 17  |-  ( C  i^i  ( A  vH  B ) )  e. 
CH
39 chlej2 23015 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  i^i  ( A  vH  B ) )  e.  CH  /\  A  e.  CH  /\  ( A  vH  x )  e. 
CH )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) )
4039ex 425 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  i^i  ( A  vH  B ) )  e.  CH  /\  A  e.  CH  /\  ( A  vH  x )  e. 
CH )  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
4138, 2, 40mp3an12 1270 . . . . . . . . . . . . . . . 16  |-  ( ( A  vH  x )  e.  CH  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
429, 41syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( A  vH  x
)  vH  ( C  i^i  ( A  vH  B
) ) )  C_  ( ( A  vH  x )  vH  A
) ) )
4342imp 420 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) 
C_  ( ( A  vH  x )  vH  A ) )
44 chjcom 23010 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  vH  x
)  e.  CH  /\  A  e.  CH )  ->  ( ( A  vH  x )  vH  A
)  =  ( A  vH  ( A  vH  x ) ) )
459, 2, 44sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  A )  =  ( A  vH  ( A  vH  x
) ) )
462chjidmi 23025 . . . . . . . . . . . . . . . . . 18  |-  ( A  vH  A )  =  A
4746oveq1i 6093 . . . . . . . . . . . . . . . . 17  |-  ( ( A  vH  A )  vH  x )  =  ( A  vH  x
)
48 chjass 23037 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CH  /\  A  e.  CH  /\  x  e.  CH )  ->  (
( A  vH  A
)  vH  x )  =  ( A  vH  ( A  vH  x
) ) )
492, 2, 48mp3an12 1270 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  (
( A  vH  A
)  vH  x )  =  ( A  vH  ( A  vH  x
) ) )
50 chjcom 23010 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  =  ( x  vH  A ) )
512, 50mpan 653 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  ( A  vH  x )  =  ( x  vH  A
) )
5247, 49, 513eqtr3a 2494 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CH  ->  ( A  vH  ( A  vH  x ) )  =  ( x  vH  A
) )
5345, 52eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( x  e.  CH  ->  (
( A  vH  x
)  vH  A )  =  ( x  vH  A ) )
5453adantr 453 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  A
)  =  ( x  vH  A ) )
5543, 54sseqtrd 3386 . . . . . . . . . . . . 13  |-  ( ( x  e.  CH  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) ) 
C_  ( x  vH  A ) )
5655ad2ant2rl 731 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( A  vH  x )  vH  ( C  i^i  ( A  vH  B ) ) )  C_  ( x  vH  A ) )
5737, 56eqsstrd 3384 . . . . . . . . . . 11  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( A  vH  x )  vH  C )  i^i  ( A  vH  B
) )  C_  (
x  vH  A )
)
58 ssrin 3568 . . . . . . . . . . 11  |-  ( ( ( ( A  vH  x )  vH  C
)  i^i  ( A  vH  B ) )  C_  ( x  vH  A )  ->  ( ( ( ( A  vH  x
)  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  C_  ( (
x  vH  A )  i^i  B ) )
5957, 58syl 16 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( ( ( A  vH  x
)  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  C_  ( (
x  vH  A )  i^i  B ) )
6025, 59eqsstrd 3384 . . . . . . . . 9  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
( x  vH  A
)  i^i  B )
)
6160adantrl 698 . . . . . . . 8  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
( x  vH  A
)  i^i  B )
)
62 mdi 23800 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  /\  ( A  MH  B  /\  x  C_  B ) )  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )
6362exp32 590 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  ->  ( A  MH  B  ->  ( x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
642, 16, 63mp3an12 1270 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  ( A  MH  B  ->  ( x  C_  B  ->  ( ( x  vH  A
)  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) ) ) )
6564com23 75 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( A  MH  B  -> 
( ( x  vH  A )  i^i  B
)  =  ( x  vH  ( A  i^i  B ) ) ) ) )
6665imp31 423 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( (
x  vH  A )  i^i  B )  =  ( x  vH  ( A  i^i  B ) ) )
672, 1chub2i 22974 . . . . . . . . . . . . 13  |-  A  C_  ( C  vH  A )
68 ssrin 3568 . . . . . . . . . . . . 13  |-  ( A 
C_  ( C  vH  A )  ->  ( A  i^i  B )  C_  ( ( C  vH  A )  i^i  B
) )
6967, 68ax-mp 8 . . . . . . . . . . . 12  |-  ( A  i^i  B )  C_  ( ( C  vH  A )  i^i  B
)
702, 16chincli 22964 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  e. 
CH
715, 16chincli 22964 . . . . . . . . . . . . 13  |-  ( ( C  vH  A )  i^i  B )  e. 
CH
72 chlej2 23015 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  i^i  B )  e.  CH  /\  ( ( C  vH  A )  i^i  B
)  e.  CH  /\  x  e.  CH )  /\  ( A  i^i  B
)  C_  ( ( C  vH  A )  i^i 
B ) )  -> 
( x  vH  ( A  i^i  B ) ) 
C_  ( x  vH  ( ( C  vH  A )  i^i  B
) ) )
7372ex 425 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  e.  CH  /\  ( ( C  vH  A )  i^i  B
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  B )  C_  ( ( C  vH  A )  i^i 
B )  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) )
7470, 71, 73mp3an12 1270 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  C_  ( ( C  vH  A )  i^i 
B )  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) )
7569, 74mpi 17 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  vH  ( A  i^i  B ) )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) )
7675ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( x  vH  ( A  i^i  B
) )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7766, 76eqsstrd 3384 . . . . . . . . 9  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  A  MH  B
)  ->  ( (
x  vH  A )  i^i  B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7877adantrr 699 . . . . . . . 8  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  A )  i^i  B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
7961, 78sstrd 3360 . . . . . . 7  |-  ( ( ( x  e.  CH  /\  x  C_  B )  /\  ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) ) )  ->  ( (
x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) )
8079exp31 589 . . . . . 6  |-  ( x  e.  CH  ->  (
x  C_  B  ->  ( ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) ) )
8180com3r 76 . . . . 5  |-  ( ( A  MH  B  /\  ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A ) )  ->  ( x  e. 
CH  ->  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) ) )
82813impb 1150 . . . 4  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
x  e.  CH  ->  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i  B )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) ) )
8382ralrimiv 2790 . . 3  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) )
84 mdbr2 23801 . . . 4  |-  ( ( ( C  vH  A
)  e.  CH  /\  B  e.  CH )  ->  ( ( C  vH  A )  MH  B  <->  A. x  e.  CH  (
x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i  B )  C_  ( x  vH  (
( C  vH  A
)  i^i  B )
) ) ) )
855, 16, 84mp2an 655 . . 3  |-  ( ( C  vH  A )  MH  B  <->  A. x  e.  CH  ( x  C_  B  ->  ( ( x  vH  ( C  vH  A ) )  i^i 
B )  C_  (
x  vH  ( ( C  vH  A )  i^i 
B ) ) ) )
8683, 85sylibr 205 . 2  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  ( C  vH  A )  MH  B )
871, 2chjcomi 22972 . . . . 5  |-  ( C  vH  A )  =  ( A  vH  C
)
88 incom 3535 . . . . . 6  |-  ( B  i^i  ( A  vH  B ) )  =  ( ( A  vH  B )  i^i  B
)
8918, 88, 193eqtr3ri 2467 . . . . 5  |-  B  =  ( ( A  vH  B )  i^i  B
)
9087, 89ineq12i 3542 . . . 4  |-  ( ( C  vH  A )  i^i  B )  =  ( ( A  vH  C )  i^i  (
( A  vH  B
)  i^i  B )
)
91 inass 3553 . . . . 5  |-  ( ( ( A  vH  C
)  i^i  ( A  vH  B ) )  i^i 
B )  =  ( ( A  vH  C
)  i^i  ( ( A  vH  B )  i^i 
B ) )
922, 16chub1i 22973 . . . . . . . 8  |-  A  C_  ( A  vH  B )
93 mdi 23800 . . . . . . . . . 10  |-  ( ( ( C  e.  CH  /\  ( A  vH  B
)  e.  CH  /\  A  e.  CH )  /\  ( C  MH  ( A  vH  B )  /\  A  C_  ( A  vH  B ) ) )  ->  ( ( A  vH  C )  i^i  ( A  vH  B
) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) )
9493exp32 590 . . . . . . . . 9  |-  ( ( C  e.  CH  /\  ( A  vH  B )  e.  CH  /\  A  e.  CH )  ->  ( C  MH  ( A  vH  B )  ->  ( A  C_  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) ) ) )
951, 29, 2, 94mp3an 1280 . . . . . . . 8  |-  ( C  MH  ( A  vH  B )  ->  ( A  C_  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) ) )
9692, 95mpi 17 . . . . . . 7  |-  ( C  MH  ( A  vH  B )  ->  (
( A  vH  C
)  i^i  ( A  vH  B ) )  =  ( A  vH  ( C  i^i  ( A  vH  B ) ) ) )
972, 38chjcomi 22972 . . . . . . . 8  |-  ( A  vH  ( C  i^i  ( A  vH  B ) ) )  =  ( ( C  i^i  ( A  vH  B ) )  vH  A )
9838, 2chlejb1i 22980 . . . . . . . . 9  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  <->  ( ( C  i^i  ( A  vH  B ) )  vH  A )  =  A )
9998biimpi 188 . . . . . . . 8  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  ->  (
( C  i^i  ( A  vH  B ) )  vH  A )  =  A )
10097, 99syl5eq 2482 . . . . . . 7  |-  ( ( C  i^i  ( A  vH  B ) ) 
C_  A  ->  ( A  vH  ( C  i^i  ( A  vH  B ) ) )  =  A )
10196, 100sylan9eq 2490 . . . . . 6  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  C )  i^i  ( A  vH  B ) )  =  A )
102101ineq1d 3543 . . . . 5  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( ( A  vH  C )  i^i  ( A  vH  B
) )  i^i  B
)  =  ( A  i^i  B ) )
10391, 102syl5eqr 2484 . . . 4  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( A  vH  C )  i^i  (
( A  vH  B
)  i^i  B )
)  =  ( A  i^i  B ) )
10490, 103syl5eq 2482 . . 3  |-  ( ( C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) ) 
C_  A )  -> 
( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) )
1051043adant1 976 . 2  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  i^i  B )  =  ( A  i^i  B ) )
10686, 105jca 520 1  |-  ( ( A  MH  B  /\  C  MH  ( A  vH  B )  /\  ( C  i^i  ( A  vH  B ) )  C_  A )  ->  (
( C  vH  A
)  MH  B  /\  ( ( C  vH  A )  i^i  B
)  =  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    i^i cin 3321    C_ wss 3322   class class class wbr 4214  (class class class)co 6083   CHcch 22434    vH chj 22438    MH cmd 22471
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cc 8317  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072  ax-hilex 22504  ax-hfvadd 22505  ax-hvcom 22506  ax-hvass 22507  ax-hv0cl 22508  ax-hvaddid 22509  ax-hfvmul 22510  ax-hvmulid 22511  ax-hvmulass 22512  ax-hvdistr1 22513  ax-hvdistr2 22514  ax-hvmul0 22515  ax-hfi 22583  ax-his1 22586  ax-his2 22587  ax-his3 22588  ax-his4 22589  ax-hcompl 22706
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-rlim 12285  df-sum 12482  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-cn 17293  df-cnp 17294  df-lm 17295  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cfil 19210  df-cau 19211  df-cmet 19212  df-grpo 21781  df-gid 21782  df-ginv 21783  df-gdiv 21784  df-ablo 21872  df-subgo 21892  df-vc 22027  df-nv 22073  df-va 22076  df-ba 22077  df-sm 22078  df-0v 22079  df-vs 22080  df-nmcv 22081  df-ims 22082  df-dip 22199  df-ssp 22223  df-ph 22316  df-cbn 22367  df-hnorm 22473  df-hba 22474  df-hvsub 22476  df-hlim 22477  df-hcau 22478  df-sh 22711  df-ch 22726  df-oc 22756  df-ch0 22757  df-shs 22812  df-chj 22814  df-md 23785
  Copyright terms: Public domain W3C validator