Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco2 Structured version   Unicode version

Theorem merco2 1510
 Description: A single axiom for propositional calculus offered by Meredith. This axiom has 19 symbols, sans auxiliaries. See notes in merco1 1487. (Contributed by Anthony Hart, 7-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco2

Proof of Theorem merco2
StepHypRef Expression
1 falim 1337 . . . . . 6
2 pm2.04 78 . . . . . 6
31, 2mpi 17 . . . . 5
4 jarl 157 . . . . . 6
5 idd 22 . . . . . 6
64, 5jad 156 . . . . 5
7 looinv 175 . . . . 5
83, 6, 73syl 19 . . . 4
98a1dd 44 . . 3
109a1i 11 . 2
1110com4l 80 1
 Colors of variables: wff set class Syntax hints:   wi 4   wfal 1326 This theorem is referenced by:  mercolem1  1511  mercolem2  1512  mercolem3  1513  mercolem4  1514  mercolem5  1515  mercolem6  1516  mercolem7  1517  mercolem8  1518  re1tbw4  1522 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-tru 1328  df-fal 1329
 Copyright terms: Public domain W3C validator