MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mersenne Unicode version

Theorem mersenne 20414
Description: A Mersenne prime is a prime number of the form  2 ^ P  - 
1. This theorem shows that the  P in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )

Proof of Theorem mersenne
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  ZZ )
2 2nn0 9935 . . . . . . 7  |-  2  e.  NN0
32numexp1 13040 . . . . . 6  |-  ( 2 ^ 1 )  =  2
4 df-2 9758 . . . . . 6  |-  2  =  ( 1  +  1 )
53, 4eqtri 2276 . . . . 5  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
6 prmuz2 12724 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= `  2 )
)
76adantl 454 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= ` 
2 ) )
8 eluz2b2 10243 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ( ZZ>= `  2
)  <->  ( ( ( 2 ^ P )  -  1 )  e.  NN  /\  1  < 
( ( 2 ^ P )  -  1 ) ) )
98simprbi 452 . . . . . . 7  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2 ^ P
)  -  1 ) )
107, 9syl 17 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  ( ( 2 ^ P )  -  1 ) )
11 1re 8791 . . . . . . . 8  |-  1  e.  RR
1211a1i 12 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  RR )
13 2re 9769 . . . . . . . . 9  |-  2  e.  RR
1413a1i 12 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2  e.  RR )
15 2ne0 9783 . . . . . . . . 9  |-  2  =/=  0
1615a1i 12 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2  =/=  0 )
1714, 16, 1reexpclzd 11222 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  RR )
1812, 12, 17ltaddsubd 9326 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 1  +  1 )  <  (
2 ^ P )  <->  1  <  ( ( 2 ^ P )  -  1 ) ) )
1910, 18mpbird 225 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  +  1 )  <  ( 2 ^ P ) )
205, 19syl5eqbr 4016 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ 1 )  <  ( 2 ^ P ) )
21 1z 10006 . . . . . 6  |-  1  e.  ZZ
2221a1i 12 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  ZZ )
23 1lt2 9839 . . . . . 6  |-  1  <  2
2423a1i 12 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  2 )
2514, 22, 1, 24ltexp2d 11226 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  <  P  <->  ( 2 ^ 1 )  <  ( 2 ^ P ) ) )
2620, 25mpbird 225 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  P )
27 eluz2b1 10242 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
281, 26, 27sylanbrc 648 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  ( ZZ>= ` 
2 ) )
29 simpllr 738 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  Prime )
30 prmnn 12710 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
3129, 30syl 17 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  NN )
3231nncnd 9716 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  CC )
33 2nn 9830 . . . . . . . . . . 11  |-  2  e.  NN
34 elfzuz 10746 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( P  -  1 ) )  ->  k  e.  ( ZZ>= `  2 )
)
3534ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  ( ZZ>= `  2 )
)
36 eluz2b2 10243 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  2
)  <->  ( k  e.  NN  /\  1  < 
k ) )
3736simplbi 448 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
3835, 37syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  NN )
3938nnnn0d 9971 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  NN0 )
40 nnexpcl 11068 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
4133, 39, 40sylancr 647 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  NN )
4241nnzd 10069 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  ZZ )
43 peano2zm 10015 . . . . . . . . 9  |-  ( ( 2 ^ k )  e.  ZZ  ->  (
( 2 ^ k
)  -  1 )  e.  ZZ )
4442, 43syl 17 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  ZZ )
4544zred 10070 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  RR )
4645recnd 8815 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  CC )
47 0re 8792 . . . . . . . . . 10  |-  0  e.  RR
4847a1i 12 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  e.  RR )
4911a1i 12 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  e.  RR )
50 0lt1 9250 . . . . . . . . . 10  |-  0  <  1
5150a1i 12 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  <  1 )
5236simprbi 452 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  1  <  k )
5335, 52syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  k )
5413a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  2  e.  RR )
5521a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  e.  ZZ )
56 elfzelz 10750 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( P  -  1 ) )  ->  k  e.  ZZ )
5756ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  ZZ )
5823a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  2 )
5954, 55, 57, 58ltexp2d 11226 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  <  k  <->  ( 2 ^ 1 )  < 
( 2 ^ k
) ) )
6053, 59mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ 1 )  <  ( 2 ^ k ) )
615, 60syl5eqbrr 4017 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  +  1 )  <  ( 2 ^ k ) )
6241nnred 9715 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  RR )
6349, 49, 62ltaddsubd 9326 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 1  +  1 )  <  ( 2 ^ k )  <->  1  <  ( ( 2 ^ k
)  -  1 ) ) )
6461, 63mpbid 203 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  ( ( 2 ^ k )  -  1 ) )
6548, 49, 45, 51, 64lttrd 8931 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  <  ( ( 2 ^ k )  -  1 ) )
66 elnnz 9987 . . . . . . . 8  |-  ( ( ( 2 ^ k
)  -  1 )  e.  NN  <->  ( (
( 2 ^ k
)  -  1 )  e.  ZZ  /\  0  <  ( ( 2 ^ k )  -  1 ) ) )
6744, 65, 66sylanbrc 648 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  NN )
6867nnne0d 9744 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  =/=  0 )
6932, 46, 68divcan2d 9492 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  x.  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )  =  ( ( 2 ^ P )  - 
1 ) )
7069, 29eqeltrd 2330 . . . 4  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  x.  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )  e.  Prime )
71 eluz2b2 10243 . . . . . 6  |-  ( ( ( 2 ^ k
)  -  1 )  e.  ( ZZ>= `  2
)  <->  ( ( ( 2 ^ k )  -  1 )  e.  NN  /\  1  < 
( ( 2 ^ k )  -  1 ) ) )
7267, 64, 71sylanbrc 648 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  ( ZZ>= `  2
) )
7341nncnd 9716 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  CC )
74 ax-1cn 8749 . . . . . . . . . . . 12  |-  1  e.  CC
75 subeq0 9027 . . . . . . . . . . . 12  |-  ( ( ( 2 ^ k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ k )  - 
1 )  =  0  <-> 
( 2 ^ k
)  =  1 ) )
7673, 74, 75sylancl 646 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  =  0  <->  (
2 ^ k )  =  1 ) )
7776necon3bid 2454 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  =/=  0  <->  (
2 ^ k )  =/=  1 ) )
7868, 77mpbid 203 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  =/=  1 )
79 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  ||  P )
80 eluz2b2 10243 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
8180simplbi 448 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
8228, 81syl 17 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN )
8382ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  NN )
84 nndivdivides 12485 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  k  e.  NN )  ->  ( k  ||  P  <->  ( P  /  k )  e.  NN ) )
8583, 38, 84syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  ||  P  <->  ( P  /  k )  e.  NN ) )
8679, 85mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e.  NN )
8786nnnn0d 9971 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e. 
NN0 )
8873, 78, 87geoser 12273 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  =  ( ( 1  -  (
( 2 ^ k
) ^ ( P  /  k ) ) )  /  ( 1  -  ( 2 ^ k ) ) ) )
8917ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  e.  RR )
9089recnd 8815 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  e.  CC )
91 negsubdi2 9060 . . . . . . . . . . 11  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2 ^ P )  - 
1 )  =  ( 1  -  ( 2 ^ P ) ) )
9290, 74, 91sylancl 646 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ P
)  -  1 )  =  ( 1  -  ( 2 ^ P
) ) )
9383nncnd 9716 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  CC )
9438nncnd 9716 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  CC )
9538nnne0d 9744 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  =/=  0 )
9693, 94, 95divcan2d 9492 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  x.  ( P  /  k ) )  =  P )
9796oveq2d 5794 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ ( k  x.  ( P  / 
k ) ) )  =  ( 2 ^ P ) )
9854recnd 8815 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  2  e.  CC )
9998, 87, 39expmuld 11200 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ ( k  x.  ( P  / 
k ) ) )  =  ( ( 2 ^ k ) ^
( P  /  k
) ) )
10097, 99eqtr3d 2290 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  =  ( ( 2 ^ k ) ^
( P  /  k
) ) )
101100oveq2d 5794 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  -  ( 2 ^ P ) )  =  ( 1  -  ( ( 2 ^ k ) ^ ( P  /  k ) ) ) )
10292, 101eqtrd 2288 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ P
)  -  1 )  =  ( 1  -  ( ( 2 ^ k ) ^ ( P  /  k ) ) ) )
103 negsubdi2 9060 . . . . . . . . . 10  |-  ( ( ( 2 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2 ^ k )  - 
1 )  =  ( 1  -  ( 2 ^ k ) ) )
10473, 74, 103sylancl 646 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ k
)  -  1 )  =  ( 1  -  ( 2 ^ k
) ) )
105102, 104oveq12d 5796 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( -u ( ( 2 ^ P )  -  1 )  /  -u (
( 2 ^ k
)  -  1 ) )  =  ( ( 1  -  ( ( 2 ^ k ) ^ ( P  / 
k ) ) )  /  ( 1  -  ( 2 ^ k
) ) ) )
10632, 46, 68div2negd 9505 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( -u ( ( 2 ^ P )  -  1 )  /  -u (
( 2 ^ k
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )
10788, 105, 1063eqtr2d 2294 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  =  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )
108 fzfid 10987 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
0 ... ( ( P  /  k )  - 
1 ) )  e. 
Fin )
109 elfznn0 10774 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( ( P  / 
k )  -  1 ) )  ->  n  e.  NN0 )
110 zexpcl 11070 . . . . . . . . 9  |-  ( ( ( 2 ^ k
)  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( 2 ^ k ) ^ n
)  e.  ZZ )
11142, 109, 110syl2an 465 . . . . . . . 8  |-  ( ( ( ( ( P  e.  ZZ  /\  (
( 2 ^ P
)  -  1 )  e.  Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  /\  n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) )  ->  (
( 2 ^ k
) ^ n )  e.  ZZ )
112108, 111fsumzcl 12159 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  e.  ZZ )
113107, 112eqeltrrd 2331 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ZZ )
11446mulid2d 8807 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  x.  ( ( 2 ^ k )  -  1 ) )  =  ( ( 2 ^ k )  - 
1 ) )
115 2z 10007 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
116 elfzm11 10805 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 2 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  2  <_  k  /\  k  <  P ) ) )
117115, 1, 116sylancr 647 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( k  e.  ( 2 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  2  <_  k  /\  k  <  P ) ) )
118117biimpa 472 . . . . . . . . . . . 12  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  ( k  e.  ZZ  /\  2  <_ 
k  /\  k  <  P ) )
119118simp3d 974 . . . . . . . . . . 11  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  k  <  P
)
120119adantr 453 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  <  P )
1211ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  ZZ )
12254, 57, 121, 58ltexp2d 11226 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  <  P  <->  ( 2 ^ k )  < 
( 2 ^ P
) ) )
123120, 122mpbid 203 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  <  ( 2 ^ P ) )
12462, 89, 49, 123ltsub1dd 9338 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  <  ( ( 2 ^ P )  - 
1 ) )
125114, 124eqbrtrd 4003 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  x.  ( ( 2 ^ k )  -  1 ) )  <  ( ( 2 ^ P )  - 
1 ) )
12631nnred 9715 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  RR )
127 ltmuldiv 9580 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ( 2 ^ P )  -  1 )  e.  RR  /\  ( ( ( 2 ^ k )  - 
1 )  e.  RR  /\  0  <  ( ( 2 ^ k )  -  1 ) ) )  ->  ( (
1  x.  ( ( 2 ^ k )  -  1 ) )  <  ( ( 2 ^ P )  - 
1 )  <->  1  <  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) ) )
12849, 126, 45, 65, 127syl112anc 1191 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 1  x.  (
( 2 ^ k
)  -  1 ) )  <  ( ( 2 ^ P )  -  1 )  <->  1  <  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) ) )
129125, 128mpbid 203 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  ( ( ( 2 ^ P )  - 
1 )  /  (
( 2 ^ k
)  -  1 ) ) )
130 eluz2b1 10242 . . . . . 6  |-  ( ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) )  e.  ZZ  /\  1  < 
( ( ( 2 ^ P )  - 
1 )  /  (
( 2 ^ k
)  -  1 ) ) ) )
131113, 129, 130sylanbrc 648 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
) )
132 nprm 12720 . . . . 5  |-  ( ( ( ( 2 ^ k )  -  1 )  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
) )  ->  -.  ( ( ( 2 ^ k )  - 
1 )  x.  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )  e.  Prime )
13372, 131, 132syl2anc 645 . . . 4  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -.  ( ( ( 2 ^ k )  - 
1 )  x.  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )  e.  Prime )
13470, 133pm2.65da 562 . . 3  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  -.  k  ||  P )
135134ralrimiva 2599 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  A. k  e.  ( 2 ... ( P  -  1 ) )  -.  k  ||  P
)
136 isprm3 12715 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. k  e.  ( 2 ... ( P  -  1 ) )  -.  k  ||  P
) )
13728, 135, 136sylanbrc 648 1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692    + caddc 8694    x. cmul 8696    < clt 8821    <_ cle 8822    - cmin 8991   -ucneg 8992    / cdiv 9377   NNcn 9700   2c2 9749   NN0cn0 9918   ZZcz 9977   ZZ>=cuz 10183   ...cfz 10734   ^cexp 11056   sum_csu 12109    || cdivides 12479   Primecprime 12706
This theorem is referenced by:  perfect1  20415  perfect  20418
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-sup 7148  df-oi 7179  df-card 7526  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-n0 9919  df-z 9978  df-uz 10184  df-rp 10308  df-fz 10735  df-fzo 10823  df-seq 10999  df-exp 11057  df-hash 11290  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-clim 11913  df-sum 12110  df-divides 12480  df-prime 12707
  Copyright terms: Public domain W3C validator