MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld Unicode version

Theorem metcld 18726
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by NM, 11-Nov-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metcld  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  A. x A. f
( ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )
) )
Distinct variable groups:    x, f, D    f, J, x    S, f, x    f, X, x

Proof of Theorem metcld
StepHypRef Expression
1 metcld.2 . . . . 5  |-  J  =  ( MetOpen `  D )
21mopntop 17981 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
32adantr 453 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  J  e.  Top )
41mopnuni 17982 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
54sseq2d 3208 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  ( S  C_  X  <->  S  C_  U. J
) )
65biimpa 472 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  S  C_  U. J
)
7 eqid 2285 . . . 4  |-  U. J  =  U. J
87iscld4 16797 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
93, 6, 8syl2anc 644 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
10 simpl 445 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  D  e.  ( * Met `  X
) )
11 simpr 449 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  S  C_  X
)
121, 10, 11metelcls 18725 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  S )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x ) ) )
1312imbi1d 310 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( (
x  e.  ( ( cls `  J ) `
 S )  ->  x  e.  S )  <->  ( E. f ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
) ) )
14 19.23v 1834 . . . . 5  |-  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( E. f
( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
) )
1513, 14syl6rbbr 257 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( x  e.  ( ( cls `  J
) `  S )  ->  x  e.  S ) ) )
1615albidv 1612 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  A. x ( x  e.  ( ( cls `  J ) `  S
)  ->  x  e.  S ) ) )
17 dfss2 3171 . . 3  |-  ( ( ( cls `  J
) `  S )  C_  S  <->  A. x ( x  e.  ( ( cls `  J ) `  S
)  ->  x  e.  S ) )
1816, 17syl6bbr 256 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
199, 18bitr4d 249 1  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  A. x A. f
( ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685    C_ wss 3154   U.cuni 3829   class class class wbr 4025   -->wf 5218   ` cfv 5222   NNcn 9742   * Metcxmt 16364   MetOpencmopn 16367   Topctop 16626   Clsdccld 16748   clsccl 16750   ~~> tclm 16951
This theorem is referenced by:  metcld2  18727
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cc 8057  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-pm 6771  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-card 7568  df-acn 7571  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-fz 10778  df-topgen 13339  df-xmet 16368  df-bl 16370  df-mopn 16371  df-top 16631  df-bases 16633  df-topon 16634  df-cld 16751  df-ntr 16752  df-cls 16753  df-lm 16954  df-1stc 17160
  Copyright terms: Public domain W3C validator