MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld Unicode version

Theorem metcld 18679
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by NM, 11-Nov-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metcld  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  A. x A. f
( ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )
) )
Distinct variable groups:    x, f, D    f, J, x    S, f, x    f, X, x

Proof of Theorem metcld
StepHypRef Expression
1 metcld.2 . . . . 5  |-  J  =  ( MetOpen `  D )
21mopntop 17934 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
32adantr 453 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  J  e.  Top )
41mopnuni 17935 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
54sseq2d 3167 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  ( S  C_  X  <->  S  C_  U. J
) )
65biimpa 472 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  S  C_  U. J
)
7 eqid 2256 . . . 4  |-  U. J  =  U. J
87iscld4 16750 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
93, 6, 8syl2anc 645 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
10 simpl 445 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  D  e.  ( * Met `  X
) )
11 simpr 449 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  S  C_  X
)
121, 10, 11metelcls 18678 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  S )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x ) ) )
1312imbi1d 310 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( (
x  e.  ( ( cls `  J ) `
 S )  ->  x  e.  S )  <->  ( E. f ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
) ) )
14 19.23v 2022 . . . . 5  |-  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( E. f
( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
) )
1513, 14syl6rbbr 257 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( x  e.  ( ( cls `  J
) `  S )  ->  x  e.  S ) ) )
1615albidv 2005 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  A. x ( x  e.  ( ( cls `  J ) `  S
)  ->  x  e.  S ) ) )
17 dfss2 3130 . . 3  |-  ( ( ( cls `  J
) `  S )  C_  S  <->  A. x ( x  e.  ( ( cls `  J ) `  S
)  ->  x  e.  S ) )
1816, 17syl6bbr 256 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
199, 18bitr4d 249 1  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  A. x A. f
( ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621    C_ wss 3113   U.cuni 3787   class class class wbr 3983   -->wf 4655   ` cfv 4659   NNcn 9700   * Metcxmt 16317   MetOpencmopn 16320   Topctop 16579   Clsdccld 16701   clsccl 16703   ~~> tclm 16904
This theorem is referenced by:  metcld2  18680
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cc 8015  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-sup 7148  df-card 7526  df-acn 7529  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-n0 9919  df-z 9978  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-fz 10735  df-topgen 13292  df-xmet 16321  df-bl 16323  df-mopn 16324  df-top 16584  df-bases 16586  df-topon 16587  df-cld 16704  df-ntr 16705  df-cls 16706  df-lm 16907  df-1stc 17113
  Copyright terms: Public domain W3C validator