MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld2 Unicode version

Theorem metcld2 18659
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metcld2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) 
C_  S ) )

Proof of Theorem metcld2
StepHypRef Expression
1 metcld.2 . . 3  |-  J  =  ( MetOpen `  D )
21metcld 18658 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  A. x A. f
( ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )
) )
3 19.23v 2022 . . . . 5  |-  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( E. f
( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
) )
4 vex 2743 . . . . . . . 8  |-  x  e. 
_V
54elima2 4971 . . . . . . 7  |-  ( x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) )  <->  E. f ( f  e.  ( S  ^m  NN )  /\  f ( ~~> t `  J ) x ) )
6 id 21 . . . . . . . . . . 11  |-  ( S 
C_  X  ->  S  C_  X )
7 elfvdm 5453 . . . . . . . . . . 11  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
8 ssexg 4100 . . . . . . . . . . 11  |-  ( ( S  C_  X  /\  X  e.  dom  * Met )  ->  S  e.  _V )
96, 7, 8syl2anr 466 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  S  e.  _V )
10 nnex 9685 . . . . . . . . . 10  |-  NN  e.  _V
11 elmapg 6718 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  NN  e.  _V )  -> 
( f  e.  ( S  ^m  NN )  <-> 
f : NN --> S ) )
129, 10, 11sylancl 646 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( f  e.  ( S  ^m  NN ) 
<->  f : NN --> S ) )
1312anbi1d 688 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( (
f  e.  ( S  ^m  NN )  /\  f ( ~~> t `  J ) x )  <-> 
( f : NN --> S  /\  f ( ~~> t `  J ) x ) ) )
1413exbidv 2006 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( E. f ( f  e.  ( S  ^m  NN )  /\  f ( ~~> t `  J ) x )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x ) ) )
155, 14syl5rbb 251 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x )  <->  x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) ) )
1615imbi1d 310 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )  <->  ( x  e.  ( ( ~~> t `  J )
" ( S  ^m  NN ) )  ->  x  e.  S ) ) )
173, 16syl5bb 250 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) )  ->  x  e.  S
) ) )
1817albidv 2005 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  A. x ( x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) )  ->  x  e.  S
) ) )
19 dfss2 3111 . . 3  |-  ( ( ( ~~> t `  J
) " ( S  ^m  NN ) ) 
C_  S  <->  A. x
( x  e.  ( ( ~~> t `  J
) " ( S  ^m  NN ) )  ->  x  e.  S
) )
2018, 19syl6bbr 256 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) 
C_  S ) )
212, 20bitrd 246 1  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) 
C_  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   _Vcvv 2740    C_ wss 3094   class class class wbr 3963   dom cdm 4626   "cima 4629   -->wf 4634   ` cfv 4638  (class class class)co 5757    ^m cmap 6705   NNcn 9679   * Metcxmt 16296   MetOpencmopn 16299   Clsdccld 16680   ~~> tclm 16883
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cc 7994  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-card 7505  df-acn 7508  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-n0 9898  df-z 9957  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-fz 10714  df-topgen 13271  df-xmet 16300  df-bl 16302  df-mopn 16303  df-top 16563  df-bases 16565  df-topon 16566  df-cld 16683  df-ntr 16684  df-cls 16685  df-lm 16886  df-1stc 17092
  Copyright terms: Public domain W3C validator