MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld2 Unicode version

Theorem metcld2 18726
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metcld2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) 
C_  S ) )
Dummy variables  x  f are mutually distinct and distinct from all other variables.

Proof of Theorem metcld2
StepHypRef Expression
1 metcld.2 . . 3  |-  J  =  ( MetOpen `  D )
21metcld 18725 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  A. x A. f
( ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )
) )
3 19.23v 1833 . . . . 5  |-  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( E. f
( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
) )
4 vex 2792 . . . . . . . 8  |-  x  e. 
_V
54elima2 5017 . . . . . . 7  |-  ( x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) )  <->  E. f ( f  e.  ( S  ^m  NN )  /\  f ( ~~> t `  J ) x ) )
6 id 21 . . . . . . . . . . 11  |-  ( S 
C_  X  ->  S  C_  X )
7 elfvdm 5515 . . . . . . . . . . 11  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
8 ssexg 4161 . . . . . . . . . . 11  |-  ( ( S  C_  X  /\  X  e.  dom  * Met )  ->  S  e.  _V )
96, 7, 8syl2anr 466 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  S  e.  _V )
10 nnex 9747 . . . . . . . . . 10  |-  NN  e.  _V
11 elmapg 6780 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  NN  e.  _V )  -> 
( f  e.  ( S  ^m  NN )  <-> 
f : NN --> S ) )
129, 10, 11sylancl 645 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( f  e.  ( S  ^m  NN ) 
<->  f : NN --> S ) )
1312anbi1d 687 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( (
f  e.  ( S  ^m  NN )  /\  f ( ~~> t `  J ) x )  <-> 
( f : NN --> S  /\  f ( ~~> t `  J ) x ) ) )
1413exbidv 1613 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( E. f ( f  e.  ( S  ^m  NN )  /\  f ( ~~> t `  J ) x )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x ) ) )
155, 14syl5rbb 251 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x )  <->  x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) ) )
1615imbi1d 310 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) x )  ->  x  e.  S )  <->  ( x  e.  ( ( ~~> t `  J )
" ( S  ^m  NN ) )  ->  x  e.  S ) ) )
173, 16syl5bb 250 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) )  ->  x  e.  S
) ) )
1817albidv 1612 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  A. x ( x  e.  ( ( ~~> t `  J ) " ( S  ^m  NN ) )  ->  x  e.  S
) ) )
19 dfss2 3170 . . 3  |-  ( ( ( ~~> t `  J
) " ( S  ^m  NN ) ) 
C_  S  <->  A. x
( x  e.  ( ( ~~> t `  J
) " ( S  ^m  NN ) )  ->  x  e.  S
) )
2018, 19syl6bbr 256 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( A. x A. f ( ( f : NN --> S  /\  f ( ~~> t `  J ) x )  ->  x  e.  S
)  <->  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) 
C_  S ) )
212, 20bitrd 246 1  |-  ( ( D  e.  ( * Met `  X )  /\  S  C_  X
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( ~~> t `  J ) " ( S  ^m  NN ) ) 
C_  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685   _Vcvv 2789    C_ wss 3153   class class class wbr 4024   dom cdm 4688   "cima 4691   -->wf 5217   ` cfv 5221  (class class class)co 5819    ^m cmap 6767   NNcn 9741   * Metcxmt 16363   MetOpencmopn 16366   Clsdccld 16747   ~~> tclm 16950
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-card 7567  df-acn 7570  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-n0 9961  df-z 10020  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-fz 10777  df-topgen 13338  df-xmet 16367  df-bl 16369  df-mopn 16370  df-top 16630  df-bases 16632  df-topon 16633  df-cld 16750  df-ntr 16751  df-cls 16752  df-lm 16953  df-1stc 17159
  Copyright terms: Public domain W3C validator