MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp2 Unicode version

Theorem metcnp2 18082
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. The distance arguments are swapped compared to metcnp 18081 (and Munkres' metcn 18083) for compatibility with df-lm 16953. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  < 
z  ->  ( ( F `  w ) D ( F `  P ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp2
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp 18081 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
4 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  C  e.  ( * Met `  X ) )
54ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  C  e.  ( * Met `  X
) )
6 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  P  e.  X )
76ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
8 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  w  e.  X )
9 xmetsym 17906 . . . . . . . . . 10  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  w  e.  X
)  ->  ( P C w )  =  ( w C P ) )
105, 7, 8, 9syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( P C w )  =  ( w C P ) )
1110breq1d 4034 . . . . . . . 8  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( P C w )  <  z  <->  ( w C P )  <  z
) )
12 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( * Met `  Y ) )
1312ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( * Met `  Y
) )
14 simpllr 737 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
15 ffvelrn 5624 . . . . . . . . . . 11  |-  ( ( F : X --> Y  /\  P  e.  X )  ->  ( F `  P
)  e.  Y )
1614, 7, 15syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
17 ffvelrn 5624 . . . . . . . . . . 11  |-  ( ( F : X --> Y  /\  w  e.  X )  ->  ( F `  w
)  e.  Y )
1814, 8, 17syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
19 xmetsym 17906 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  Y )  /\  ( F `  P )  e.  Y  /\  ( F `  w
)  e.  Y )  ->  ( ( F `
 P ) D ( F `  w
) )  =  ( ( F `  w
) D ( F `
 P ) ) )
2013, 16, 18, 19syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  P
) D ( F `
 w ) )  =  ( ( F `
 w ) D ( F `  P
) ) )
2120breq1d 4034 . . . . . . . 8  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( F `  P ) D ( F `  w ) )  <  y  <->  ( ( F `  w ) D ( F `  P ) )  < 
y ) )
2211, 21imbi12d 313 . . . . . . 7  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y )  <-> 
( ( w C P )  <  z  ->  ( ( F `  w ) D ( F `  P ) )  <  y ) ) )
2322ralbidva 2560 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  X  (
( P C w )  <  z  -> 
( ( F `  P ) D ( F `  w ) )  <  y )  <->  A. w  e.  X  ( ( w C P )  <  z  ->  ( ( F `  w ) D ( F `  P ) )  <  y ) ) )
2423anassrs 631 . . . . 5  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y )  <->  A. w  e.  X  ( (
w C P )  <  z  ->  (
( F `  w
) D ( F `
 P ) )  <  y ) ) )
2524rexbidva 2561 . . . 4  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  X  ( (
w C P )  <  z  ->  (
( F `  w
) D ( F `
 P ) )  <  y ) ) )
2625ralbidva 2560 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  -> 
( ( F `  P ) D ( F `  w ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  < 
z  ->  ( ( F `  w ) D ( F `  P ) )  < 
y ) ) )
2726pm5.32da 624 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  -> 
( ( F `  P ) D ( F `  w ) )  <  y ) )  <->  ( F : X
--> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  <  z  ->  ( ( F `  w ) D ( F `  P ) )  <  y ) ) ) )
283, 27bitrd 246 1  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  < 
z  ->  ( ( F `  w ) D ( F `  P ) )  < 
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024   -->wf 5217   ` cfv 5221  (class class class)co 5819    < clt 8862   RR+crp 10349   * Metcxmt 16363   MetOpencmopn 16366    CnP ccnp 16949
This theorem is referenced by:  metcnpi2  18085  rlimcnp  20254
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-n0 9961  df-z 10020  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-topgen 13338  df-xmet 16367  df-bl 16369  df-mopn 16370  df-top 16630  df-bases 16632  df-topon 16633  df-cnp 16952
  Copyright terms: Public domain W3C validator