MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp4 Unicode version

Theorem metcnp4 18730
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. Theorem 14-4.3 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 4-May-2014.)
Hypotheses
Ref Expression
metcnp4.3  |-  J  =  ( MetOpen `  C )
metcnp4.4  |-  K  =  ( MetOpen `  D )
metcnp4.5  |-  ( ph  ->  C  e.  ( * Met `  X ) )
metcnp4.6  |-  ( ph  ->  D  e.  ( * Met `  Y ) )
metcnp4.7  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
metcnp4  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) ) )
Distinct variable groups:    C, f    D, f    f, F    P, f    f, J    ph, f    f, X    f, Y    f, K

Proof of Theorem metcnp4
StepHypRef Expression
1 metcnp4.5 . . 3  |-  ( ph  ->  C  e.  ( * Met `  X ) )
2 metcnp4.3 . . . 4  |-  J  =  ( MetOpen `  C )
32met1stc 18062 . . 3  |-  ( C  e.  ( * Met `  X )  ->  J  e.  1stc )
41, 3syl 17 . 2  |-  ( ph  ->  J  e.  1stc )
52mopntopon 17980 . . 3  |-  ( C  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
61, 5syl 17 . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 metcnp4.6 . . 3  |-  ( ph  ->  D  e.  ( * Met `  Y ) )
8 metcnp4.4 . . . 4  |-  K  =  ( MetOpen `  D )
98mopntopon 17980 . . 3  |-  ( D  e.  ( * Met `  Y )  ->  K  e.  (TopOn `  Y )
)
107, 9syl 17 . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
11 metcnp4.7 . 2  |-  ( ph  ->  P  e.  X )
124, 6, 10, 111stccnp 17183 1  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528    = wceq 1624    e. wcel 1685   class class class wbr 4025    o. ccom 4693   -->wf 5218   ` cfv 5222  (class class class)co 5820   NNcn 9742   * Metcxmt 16364   MetOpencmopn 16367  TopOnctopon 16627    CnP ccnp 16950   ~~> tclm 16951   1stcc1stc 17158
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cc 8057  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-pm 6771  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-card 7568  df-acn 7571  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-fz 10778  df-topgen 13339  df-xmet 16368  df-bl 16370  df-mopn 16371  df-top 16631  df-bases 16633  df-topon 16634  df-cld 16751  df-ntr 16752  df-cls 16753  df-cnp 16953  df-lm 16954  df-1stc 17160
  Copyright terms: Public domain W3C validator