MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi2 Unicode version

Theorem metcnpi2 18465
Description: Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 18462. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnpi2  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <  x  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) )
Distinct variable groups:    x, y, F    x, J, y    x, K, y    x, X, y   
x, Y, y    x, A, y    x, C, y   
x, D, y    x, P, y

Proof of Theorem metcnpi2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . 5  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
2 simpll 731 . . . . . 6  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  C  e.  ( * Met `  X
) )
3 simplr 732 . . . . . 6  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  D  e.  ( * Met `  Y
) )
4 eqid 2387 . . . . . . . . 9  |-  U. J  =  U. J
54cnprcl 17231 . . . . . . . 8  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  U. J )
65adantl 453 . . . . . . 7  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  U. J )
7 metcn.2 . . . . . . . . 9  |-  J  =  ( MetOpen `  C )
87mopnuni 18361 . . . . . . . 8  |-  ( C  e.  ( * Met `  X )  ->  X  =  U. J )
98ad2antrr 707 . . . . . . 7  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  X  =  U. J )
106, 9eleqtrrd 2464 . . . . . 6  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
11 metcn.4 . . . . . . 7  |-  K  =  ( MetOpen `  D )
127, 11metcnp2 18462 . . . . . 6  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  < 
x  ->  ( ( F `  y ) D ( F `  P ) )  < 
z ) ) ) )
132, 3, 10, 12syl3anc 1184 . . . . 5  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <  x  -> 
( ( F `  y ) D ( F `  P ) )  <  z ) ) ) )
141, 13mpbid 202 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F : X --> Y  /\  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  < 
x  ->  ( ( F `  y ) D ( F `  P ) )  < 
z ) ) )
1514simprd 450 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <  x  ->  ( ( F `  y ) D ( F `  P ) )  <  z ) )
16 breq2 4157 . . . . . 6  |-  ( z  =  A  ->  (
( ( F `  y ) D ( F `  P ) )  <  z  <->  ( ( F `  y ) D ( F `  P ) )  < 
A ) )
1716imbi2d 308 . . . . 5  |-  ( z  =  A  ->  (
( ( y C P )  <  x  ->  ( ( F `  y ) D ( F `  P ) )  <  z )  <-> 
( ( y C P )  <  x  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) ) )
1817rexralbidv 2693 . . . 4  |-  ( z  =  A  ->  ( E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <  x  ->  (
( F `  y
) D ( F `
 P ) )  <  z )  <->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  < 
x  ->  ( ( F `  y ) D ( F `  P ) )  < 
A ) ) )
1918rspccv 2992 . . 3  |-  ( A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  < 
x  ->  ( ( F `  y ) D ( F `  P ) )  < 
z )  ->  ( A  e.  RR+  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  < 
x  ->  ( ( F `  y ) D ( F `  P ) )  < 
A ) ) )
2015, 19syl 16 . 2  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( A  e.  RR+  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  < 
x  ->  ( ( F `  y ) D ( F `  P ) )  < 
A ) ) )
2120impr 603 1  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <  x  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   U.cuni 3957   class class class wbr 4153   -->wf 5390   ` cfv 5394  (class class class)co 6020    < clt 9053   RR+crp 10544   * Metcxmt 16612   MetOpencmopn 16617    CnP ccnp 17211
This theorem is referenced by:  metcnpi3  18466  ftc1lem6  19792  ftc1cnnc  25979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-topgen 13594  df-xmet 16619  df-bl 16621  df-mopn 16622  df-top 16886  df-bases 16888  df-topon 16889  df-cnp 17214
  Copyright terms: Public domain W3C validator