MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metelcls Unicode version

Theorem metelcls 18562
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 7945. The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Hypotheses
Ref Expression
metelcls.2  |-  J  =  ( MetOpen `  D )
metelcls.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
metelcls.5  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
metelcls  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
Distinct variable groups:    D, f    f, J    P, f    S, f    ph, f
Allowed substitution hint:    X( f)

Proof of Theorem metelcls
StepHypRef Expression
1 metelcls.3 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
2 metelcls.2 . . . 4  |-  J  =  ( MetOpen `  D )
32met1stc 17899 . . 3  |-  ( D  e.  ( * Met `  X )  ->  J  e.  1stc )
41, 3syl 17 . 2  |-  ( ph  ->  J  e.  1stc )
5 metelcls.5 . . 3  |-  ( ph  ->  S  C_  X )
62mopnuni 17819 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
71, 6syl 17 . . 3  |-  ( ph  ->  X  =  U. J
)
85, 7sseqtrd 3135 . 2  |-  ( ph  ->  S  C_  U. J )
9 eqid 2253 . . 3  |-  U. J  =  U. J
1091stcelcls 17019 . 2  |-  ( ( J  e.  1stc  /\  S  C_ 
U. J )  -> 
( P  e.  ( ( cls `  J
) `  S )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
114, 8, 10syl2anc 645 1  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    C_ wss 3078   U.cuni 3727   class class class wbr 3920   -->wf 4588   ` cfv 4592   NNcn 9626   * Metcxmt 16201   MetOpencmopn 16204   clsccl 16587   ~~> tclm 16788   1stcc1stc 16995
This theorem is referenced by:  metcld  18563
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-card 7456  df-acn 7459  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-fz 10661  df-topgen 13218  df-xmet 16205  df-bl 16207  df-mopn 16208  df-top 16468  df-bases 16470  df-topon 16471  df-cld 16588  df-ntr 16589  df-cls 16590  df-lm 16791  df-1stc 16997
  Copyright terms: Public domain W3C validator