Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metf1o Unicode version

Theorem metf1o 26572
Description: Use a bijection with a metric space to construct a metric on a set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
metf1o.2  |-  N  =  ( x  e.  Y ,  y  e.  Y  |->  ( ( F `  x ) M ( F `  y ) ) )
Assertion
Ref Expression
metf1o  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  N  e.  ( Met `  Y
) )
Distinct variable groups:    x, M, y    x, X, y    x, Y, y    x, F, y   
x, A, y
Allowed substitution hints:    N( x, y)

Proof of Theorem metf1o
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5488 . . . . . . 7  |-  ( F : Y -1-1-onto-> X  ->  F : Y
--> X )
2 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : Y --> X  /\  x  e.  Y )  ->  ( F `  x
)  e.  X )
32ex 423 . . . . . . . 8  |-  ( F : Y --> X  -> 
( x  e.  Y  ->  ( F `  x
)  e.  X ) )
4 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : Y --> X  /\  y  e.  Y )  ->  ( F `  y
)  e.  X )
54ex 423 . . . . . . . 8  |-  ( F : Y --> X  -> 
( y  e.  Y  ->  ( F `  y
)  e.  X ) )
63, 5anim12d 546 . . . . . . 7  |-  ( F : Y --> X  -> 
( ( x  e.  Y  /\  y  e.  Y )  ->  (
( F `  x
)  e.  X  /\  ( F `  y )  e.  X ) ) )
71, 6syl 15 . . . . . 6  |-  ( F : Y -1-1-onto-> X  ->  ( (
x  e.  Y  /\  y  e.  Y )  ->  ( ( F `  x )  e.  X  /\  ( F `  y
)  e.  X ) ) )
8 metcl 17913 . . . . . . 7  |-  ( ( M  e.  ( Met `  X )  /\  ( F `  x )  e.  X  /\  ( F `  y )  e.  X )  ->  (
( F `  x
) M ( F `
 y ) )  e.  RR )
983expib 1154 . . . . . 6  |-  ( M  e.  ( Met `  X
)  ->  ( (
( F `  x
)  e.  X  /\  ( F `  y )  e.  X )  -> 
( ( F `  x ) M ( F `  y ) )  e.  RR ) )
107, 9sylan9r 639 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  (
( x  e.  Y  /\  y  e.  Y
)  ->  ( ( F `  x ) M ( F `  y ) )  e.  RR ) )
11103adant1 973 . . . 4  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  (
( x  e.  Y  /\  y  e.  Y
)  ->  ( ( F `  x ) M ( F `  y ) )  e.  RR ) )
1211ralrimivv 2647 . . 3  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  A. x  e.  Y  A. y  e.  Y  ( ( F `  x ) M ( F `  y ) )  e.  RR )
13 metf1o.2 . . . 4  |-  N  =  ( x  e.  Y ,  y  e.  Y  |->  ( ( F `  x ) M ( F `  y ) ) )
1413fmpt2 6207 . . 3  |-  ( A. x  e.  Y  A. y  e.  Y  (
( F `  x
) M ( F `
 y ) )  e.  RR  <->  N :
( Y  X.  Y
) --> RR )
1512, 14sylib 188 . 2  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  N : ( Y  X.  Y ) --> RR )
16 fveq2 5541 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( F `  x )  =  ( F `  u ) )
1716oveq1d 5889 . . . . . . . . . 10  |-  ( x  =  u  ->  (
( F `  x
) M ( F `
 y ) )  =  ( ( F `
 u ) M ( F `  y
) ) )
18 fveq2 5541 . . . . . . . . . . 11  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
1918oveq2d 5890 . . . . . . . . . 10  |-  ( y  =  v  ->  (
( F `  u
) M ( F `
 y ) )  =  ( ( F `
 u ) M ( F `  v
) ) )
20 ovex 5899 . . . . . . . . . 10  |-  ( ( F `  u ) M ( F `  v ) )  e. 
_V
2117, 19, 13, 20ovmpt2 5999 . . . . . . . . 9  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( u N v )  =  ( ( F `  u ) M ( F `  v ) ) )
2221eqeq1d 2304 . . . . . . . 8  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( ( u N v )  =  0  <-> 
( ( F `  u ) M ( F `  v ) )  =  0 ) )
2322adantl 452 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( u N v )  =  0  <-> 
( ( F `  u ) M ( F `  v ) )  =  0 ) )
24 ffvelrn 5679 . . . . . . . . . . . . 13  |-  ( ( F : Y --> X  /\  u  e.  Y )  ->  ( F `  u
)  e.  X )
2524ex 423 . . . . . . . . . . . 12  |-  ( F : Y --> X  -> 
( u  e.  Y  ->  ( F `  u
)  e.  X ) )
26 ffvelrn 5679 . . . . . . . . . . . . 13  |-  ( ( F : Y --> X  /\  v  e.  Y )  ->  ( F `  v
)  e.  X )
2726ex 423 . . . . . . . . . . . 12  |-  ( F : Y --> X  -> 
( v  e.  Y  ->  ( F `  v
)  e.  X ) )
2825, 27anim12d 546 . . . . . . . . . . 11  |-  ( F : Y --> X  -> 
( ( u  e.  Y  /\  v  e.  Y )  ->  (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X ) ) )
291, 28syl 15 . . . . . . . . . 10  |-  ( F : Y -1-1-onto-> X  ->  ( (
u  e.  Y  /\  v  e.  Y )  ->  ( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X ) ) )
3029imp 418 . . . . . . . . 9  |-  ( ( F : Y -1-1-onto-> X  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X ) )
3130adantll 694 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X ) )
32 meteq0 17920 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  ( F `  u )  e.  X  /\  ( F `  v )  e.  X )  ->  (
( ( F `  u ) M ( F `  v ) )  =  0  <->  ( F `  u )  =  ( F `  v ) ) )
33323expb 1152 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X ) )  ->  ( ( ( F `  u ) M ( F `  v ) )  =  0  <->  ( F `  u )  =  ( F `  v ) ) )
3433adantlr 695 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( ( F `  u )  e.  X  /\  ( F `  v )  e.  X ) )  -> 
( ( ( F `
 u ) M ( F `  v
) )  =  0  <-> 
( F `  u
)  =  ( F `
 v ) ) )
3531, 34syldan 456 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( ( F `
 u ) M ( F `  v
) )  =  0  <-> 
( F `  u
)  =  ( F `
 v ) ) )
36 f1of1 5487 . . . . . . . . 9  |-  ( F : Y -1-1-onto-> X  ->  F : Y -1-1-> X )
37 f1fveq 5802 . . . . . . . . 9  |-  ( ( F : Y -1-1-> X  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  u
)  =  ( F `
 v )  <->  u  =  v ) )
3836, 37sylan 457 . . . . . . . 8  |-  ( ( F : Y -1-1-onto-> X  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
( F `  u
)  =  ( F `
 v )  <->  u  =  v ) )
3938adantll 694 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( F `  u )  =  ( F `  v )  <-> 
u  =  v ) )
4023, 35, 393bitrd 270 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( u N v )  =  0  <-> 
u  =  v ) )
41 ffvelrn 5679 . . . . . . . . . . . . . . 15  |-  ( ( F : Y --> X  /\  w  e.  Y )  ->  ( F `  w
)  e.  X )
4241ex 423 . . . . . . . . . . . . . 14  |-  ( F : Y --> X  -> 
( w  e.  Y  ->  ( F `  w
)  e.  X ) )
4328, 42anim12d 546 . . . . . . . . . . . . 13  |-  ( F : Y --> X  -> 
( ( ( u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y )  ->  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) ) )
441, 43syl 15 . . . . . . . . . . . 12  |-  ( F : Y -1-1-onto-> X  ->  ( (
( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) ) )
4544imp 418 . . . . . . . . . . 11  |-  ( ( F : Y -1-1-onto-> X  /\  ( ( u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y ) )  -> 
( ( ( F `
 u )  e.  X  /\  ( F `
 v )  e.  X )  /\  ( F `  w )  e.  X ) )
4645adantll 694 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( (
u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y
) )  ->  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) )
47 mettri2 17922 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ( Met `  X )  /\  (
( F `  w
)  e.  X  /\  ( F `  u )  e.  X  /\  ( F `  v )  e.  X ) )  -> 
( ( F `  u ) M ( F `  v ) )  <_  ( (
( F `  w
) M ( F `
 u ) )  +  ( ( F `
 w ) M ( F `  v
) ) ) )
4847expcom 424 . . . . . . . . . . . . . 14  |-  ( ( ( F `  w
)  e.  X  /\  ( F `  u )  e.  X  /\  ( F `  v )  e.  X )  ->  ( M  e.  ( Met `  X )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) ) )
49483expb 1152 . . . . . . . . . . . . 13  |-  ( ( ( F `  w
)  e.  X  /\  ( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X ) )  ->  ( M  e.  ( Met `  X
)  ->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
5049ancoms 439 . . . . . . . . . . . 12  |-  ( ( ( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
)  ->  ( M  e.  ( Met `  X
)  ->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
5150impcom 419 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( ( F `  u )  e.  X  /\  ( F `  v
)  e.  X )  /\  ( F `  w )  e.  X
) )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5251adantlr 695 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( (
( F `  u
)  e.  X  /\  ( F `  v )  e.  X )  /\  ( F `  w )  e.  X ) )  ->  ( ( F `
 u ) M ( F `  v
) )  <_  (
( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5346, 52syldan 456 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( (
u  e.  Y  /\  v  e.  Y )  /\  w  e.  Y
) )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5453anassrs 629 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  F : Y
-1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  /\  w  e.  Y )  ->  (
( F `  u
) M ( F `
 v ) )  <_  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
5521adantr 451 . . . . . . . . . 10  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
u N v )  =  ( ( F `
 u ) M ( F `  v
) ) )
56 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
5756oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
( F `  x
) M ( F `
 y ) )  =  ( ( F `
 w ) M ( F `  y
) ) )
58 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  ( F `  y )  =  ( F `  u ) )
5958oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( y  =  u  ->  (
( F `  w
) M ( F `
 y ) )  =  ( ( F `
 w ) M ( F `  u
) ) )
60 ovex 5899 . . . . . . . . . . . . . 14  |-  ( ( F `  w ) M ( F `  u ) )  e. 
_V
6157, 59, 13, 60ovmpt2 5999 . . . . . . . . . . . . 13  |-  ( ( w  e.  Y  /\  u  e.  Y )  ->  ( w N u )  =  ( ( F `  w ) M ( F `  u ) ) )
6261ancoms 439 . . . . . . . . . . . 12  |-  ( ( u  e.  Y  /\  w  e.  Y )  ->  ( w N u )  =  ( ( F `  w ) M ( F `  u ) ) )
6362adantlr 695 . . . . . . . . . . 11  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
w N u )  =  ( ( F `
 w ) M ( F `  u
) ) )
6418oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
( F `  w
) M ( F `
 y ) )  =  ( ( F `
 w ) M ( F `  v
) ) )
65 ovex 5899 . . . . . . . . . . . . . 14  |-  ( ( F `  w ) M ( F `  v ) )  e. 
_V
6657, 64, 13, 65ovmpt2 5999 . . . . . . . . . . . . 13  |-  ( ( w  e.  Y  /\  v  e.  Y )  ->  ( w N v )  =  ( ( F `  w ) M ( F `  v ) ) )
6766ancoms 439 . . . . . . . . . . . 12  |-  ( ( v  e.  Y  /\  w  e.  Y )  ->  ( w N v )  =  ( ( F `  w ) M ( F `  v ) ) )
6867adantll 694 . . . . . . . . . . 11  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
w N v )  =  ( ( F `
 w ) M ( F `  v
) ) )
6963, 68oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
( w N u )  +  ( w N v ) )  =  ( ( ( F `  w ) M ( F `  u ) )  +  ( ( F `  w ) M ( F `  v ) ) ) )
7055, 69breq12d 4052 . . . . . . . . 9  |-  ( ( ( u  e.  Y  /\  v  e.  Y
)  /\  w  e.  Y )  ->  (
( u N v )  <_  ( (
w N u )  +  ( w N v ) )  <->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
7170adantll 694 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  F : Y
-1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  /\  w  e.  Y )  ->  (
( u N v )  <_  ( (
w N u )  +  ( w N v ) )  <->  ( ( F `  u ) M ( F `  v ) )  <_ 
( ( ( F `
 w ) M ( F `  u
) )  +  ( ( F `  w
) M ( F `
 v ) ) ) ) )
7254, 71mpbird 223 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  F : Y
-1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  /\  w  e.  Y )  ->  (
u N v )  <_  ( ( w N u )  +  ( w N v ) ) )
7372ralrimiva 2639 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  ->  A. w  e.  Y  ( u N v )  <_  ( (
w N u )  +  ( w N v ) ) )
7440, 73jca 518 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X
)  /\  ( u  e.  Y  /\  v  e.  Y ) )  -> 
( ( ( u N v )  =  0  <->  u  =  v
)  /\  A. w  e.  Y  ( u N v )  <_ 
( ( w N u )  +  ( w N v ) ) ) )
75743adantl1 1111 . . . 4  |-  ( ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  /\  (
u  e.  Y  /\  v  e.  Y )
)  ->  ( (
( u N v )  =  0  <->  u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  ( ( w N u )  +  ( w N v ) ) ) )
7675ex 423 . . 3  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  (
( u  e.  Y  /\  v  e.  Y
)  ->  ( (
( u N v )  =  0  <->  u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  ( ( w N u )  +  ( w N v ) ) ) ) )
7776ralrimivv 2647 . 2  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  A. u  e.  Y  A. v  e.  Y  ( (
( u N v )  =  0  <->  u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  ( ( w N u )  +  ( w N v ) ) ) )
78 ismet 17904 . . 3  |-  ( Y  e.  A  ->  ( N  e.  ( Met `  Y )  <->  ( N : ( Y  X.  Y ) --> RR  /\  A. u  e.  Y  A. v  e.  Y  (
( ( u N v )  =  0  <-> 
u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  (
( w N u )  +  ( w N v ) ) ) ) ) )
79783ad2ant1 976 . 2  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  ( N  e.  ( Met `  Y )  <->  ( N : ( Y  X.  Y ) --> RR  /\  A. u  e.  Y  A. v  e.  Y  (
( ( u N v )  =  0  <-> 
u  =  v )  /\  A. w  e.  Y  ( u N v )  <_  (
( w N u )  +  ( w N v ) ) ) ) ) )
8015, 77, 79mpbir2and 888 1  |-  ( ( Y  e.  A  /\  M  e.  ( Met `  X )  /\  F : Y -1-1-onto-> X )  ->  N  e.  ( Met `  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   class class class wbr 4039    X. cxp 4703   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   RRcr 8752   0cc0 8753    + caddc 8756    <_ cle 8884   Metcme 16386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-mulcl 8815  ax-i2m1 8821
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-xadd 10469  df-xmet 16389  df-met 16390
  Copyright terms: Public domain W3C validator