MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmrcl2 Unicode version

Theorem mhmrcl2 14730
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl2  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )

Proof of Theorem mhmrcl2
Dummy variables  f 
s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 14726 . 2  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
21elmpt2cl2 6281 1  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   ` cfv 5445  (class class class)co 6072    ^m cmap 7009   Basecbs 13457   +g cplusg 13517   0gc0g 13711   Mndcmnd 14672   MndHom cmhm 14724
This theorem is referenced by:  resmhm  14747  mhmco  14750  mhmima  14751  pwsco2mhm  14758  gsumwmhm  14778  mhmmulg  14910  mhmhmeotmd  24301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4875  df-dm 4879  df-iota 5409  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-mhm 14726
  Copyright terms: Public domain W3C validator