MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem1 Unicode version

Theorem minveclem1 19192
Description: Lemma for minvec 19204. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
Assertion
Ref Expression
minveclem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w,  .-    w, A, y    w, J, y    w, N, y    ph, w, y    w, R, y    w, U, y   
w, X, y    w, Y, y

Proof of Theorem minveclem1
StepHypRef Expression
1 minvec.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
2 minvec.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil )
3 cphngp 19007 . . . . . . . 8  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  U  e. NrmGrp )
54adantr 452 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e. NrmGrp )
6 cphlmod 19008 . . . . . . . . 9  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
72, 6syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
87adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  LMod )
9 minvec.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
109adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
11 minvec.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
12 minvec.x . . . . . . . . . 10  |-  X  =  ( Base `  U
)
13 eqid 2387 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
1412, 13lssss 15940 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
1511, 14syl 16 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1615sselda 3291 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
17 minvec.m . . . . . . . 8  |-  .-  =  ( -g `  U )
1812, 17lmodvsubcl 15916 . . . . . . 7  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .-  y )  e.  X )
198, 10, 16, 18syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A  .-  y )  e.  X )
20 minvec.n . . . . . . 7  |-  N  =  ( norm `  U
)
2112, 20nmcl 18533 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  ( N `  ( A  .-  y ) )  e.  RR )
225, 19, 21syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  RR )
23 eqid 2387 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
2422, 23fmptd 5832 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) : Y --> RR )
25 frn 5537 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A 
.-  y ) ) ) : Y --> RR  ->  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  C_  RR )
2624, 25syl 16 . . 3  |-  ( ph  ->  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  C_  RR )
271, 26syl5eqss 3335 . 2  |-  ( ph  ->  R  C_  RR )
2813lssn0 15944 . . . 4  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  =/=  (/) )
2911, 28syl 16 . . 3  |-  ( ph  ->  Y  =/=  (/) )
301eqeq1i 2394 . . . . 5  |-  ( R  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  =  (/) )
31 dm0rn0 5026 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  (/) )
32 fvex 5682 . . . . . . 7  |-  ( N `
 ( A  .-  y ) )  e. 
_V
3332, 23dmmpti 5514 . . . . . 6  |-  dom  (
y  e.  Y  |->  ( N `  ( A 
.-  y ) ) )  =  Y
3433eqeq1i 2394 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )  =  (/)  <->  Y  =  (/) )
3530, 31, 343bitr2i 265 . . . 4  |-  ( R  =  (/)  <->  Y  =  (/) )
3635necon3bii 2582 . . 3  |-  ( R  =/=  (/)  <->  Y  =/=  (/) )
3729, 36sylibr 204 . 2  |-  ( ph  ->  R  =/=  (/) )
3812, 20nmge0 18534 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  0  <_  ( N `  ( A  .-  y ) ) )
395, 19, 38syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A  .-  y ) ) )
4039ralrimiva 2732 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A  .-  y
) ) )
4132rgenw 2716 . . . . 5  |-  A. y  e.  Y  ( N `  ( A  .-  y
) )  e.  _V
42 breq2 4157 . . . . . 6  |-  ( w  =  ( N `  ( A  .-  y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A 
.-  y ) ) ) )
4323, 42ralrnmpt 5817 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A  .-  y ) )  e. 
_V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) 0  <_  w 
<-> 
A. y  e.  Y 
0  <_  ( N `  ( A  .-  y
) ) ) )
4441, 43ax-mp 8 . . . 4  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A 
.-  y ) ) )
4540, 44sylibr 204 . . 3  |-  ( ph  ->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) 0  <_  w
)
461raleqi 2851 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) 0  <_  w
)
4745, 46sylibr 204 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
4827, 37, 473jca 1134 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   _Vcvv 2899    C_ wss 3263   (/)c0 3571   class class class wbr 4153    e. cmpt 4207   dom cdm 4818   ran crn 4819   -->wf 5390   ` cfv 5394  (class class class)co 6020   RRcr 8922   0cc0 8923    <_ cle 9054   Basecbs 13396   ↾s cress 13397   TopOpenctopn 13576   -gcsg 14615   LModclmod 15877   LSubSpclss 15935   normcnm 18495  NrmGrpcngp 18496   CPreHilccph 19000  CMetSpccms 19154
This theorem is referenced by:  minveclem4c  19193  minveclem2  19194  minveclem3b  19196  minveclem4  19200  minveclem6  19202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-topgen 13594  df-0g 13654  df-mnd 14617  df-grp 14739  df-minusg 14740  df-sbg 14741  df-lmod 15879  df-lss 15936  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-xms 18259  df-ms 18260  df-nm 18501  df-ngp 18502  df-nlm 18505  df-cph 19002
  Copyright terms: Public domain W3C validator