MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Structured version   Unicode version

Theorem minveclem4 19325
Description: Lemma for minvec 19329. The convergent point of the Cauchy sequence  F attains the minimum distance, and so is closer to  A than any other point in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
minvec.t  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
Assertion
Ref Expression
minveclem4  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Distinct variable groups:    x, y,  .-    x, r, y, A    J, r, x, y    x, P, y    x, F, y   
x, N, y    ph, r, x, y    x, R, y   
x, U, y    X, r, x, y    Y, r, x, y    D, r, x, y    S, r, x, y    T, r, y
Allowed substitution hints:    P( r)    R( r)    T( x)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 inss2 3554 . . 3  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  Y
2 minvec.x . . . 4  |-  X  =  ( Base `  U
)
3 minvec.m . . . 4  |-  .-  =  ( -g `  U )
4 minvec.n . . . 4  |-  N  =  ( norm `  U
)
5 minvec.u . . . 4  |-  ( ph  ->  U  e.  CPreHil )
6 minvec.y . . . 4  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
7 minvec.w . . . 4  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
8 minvec.a . . . 4  |-  ( ph  ->  A  e.  X )
9 minvec.j . . . 4  |-  J  =  ( TopOpen `  U )
10 minvec.r . . . 4  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
11 minvec.s . . . 4  |-  S  =  sup ( R ,  RR ,  `'  <  )
12 minvec.d . . . 4  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
13 minvec.f . . . 4  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
14 minvec.p . . . 4  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4a 19323 . . 3  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
161, 15sseldi 3338 . 2  |-  ( ph  ->  P  e.  Y )
1712oveqi 6086 . . . . . . 7  |-  ( A D P )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )
182, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4b 19324 . . . . . . . 8  |-  ( ph  ->  P  e.  X )
198, 18ovresd 6206 . . . . . . 7  |-  ( ph  ->  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )  =  ( A (
dist `  U ) P ) )
2017, 19syl5eq 2479 . . . . . 6  |-  ( ph  ->  ( A D P )  =  ( A ( dist `  U
) P ) )
21 cphngp 19128 . . . . . . . 8  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
225, 21syl 16 . . . . . . 7  |-  ( ph  ->  U  e. NrmGrp )
23 eqid 2435 . . . . . . . 8  |-  ( dist `  U )  =  (
dist `  U )
244, 2, 3, 23ngpds 18642 . . . . . . 7  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  P  e.  X )  ->  ( A ( dist `  U
) P )  =  ( N `  ( A  .-  P ) ) )
2522, 8, 18, 24syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( A ( dist `  U ) P )  =  ( N `  ( A  .-  P ) ) )
2620, 25eqtrd 2467 . . . . 5  |-  ( ph  ->  ( A D P )  =  ( N `
 ( A  .-  P ) ) )
2726adantr 452 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  =  ( N `  ( A  .-  P ) ) )
28 ngpms 18639 . . . . . . . 8  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
292, 12msmet 18479 . . . . . . . 8  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
3022, 28, 293syl 19 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
31 metcl 18354 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  ( A D P )  e.  RR )
3230, 8, 18, 31syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( A D P )  e.  RR )
3332adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  e.  RR )
342, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 19318 . . . . . 6  |-  ( ph  ->  S  e.  RR )
3534adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  e.  RR )
3622adantr 452 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e. NrmGrp )
37 cphlmod 19129 . . . . . . . . 9  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
385, 37syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
3938adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  LMod )
408adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
41 eqid 2435 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
422, 41lssss 16005 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
436, 42syl 16 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
4443sselda 3340 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
452, 3lmodvsubcl 15981 . . . . . . 7  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .-  y )  e.  X )
4639, 40, 44, 45syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A  .-  y )  e.  X )
472, 4nmcl 18654 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4836, 46, 47syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4934, 32ltnled 9212 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  <->  -.  ( A D P )  <_  S ) )
502, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem3b 19321 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
51 fbsspw 17856 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
5250, 51syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  C_  ~P Y
)
53 sspwb 4405 . . . . . . . . . . . . . . . . . . . 20  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
5443, 53sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ~P Y  C_  ~P X )
5552, 54sstrd 3350 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  C_  ~P X
)
56 fvex 5734 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  U )  e.  _V
572, 56eqeltri 2505 . . . . . . . . . . . . . . . . . . 19  |-  X  e. 
_V
5857a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  X  e.  _V )
59 fbasweak 17889 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
6050, 55, 58, 59syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( fBas `  X ) )
6160adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  e.  ( fBas `  X )
)
62 fgcl 17902 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
6361, 62syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( X filGen F )  e.  ( Fil `  X ) )
64 ssfg 17896 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
6561, 64syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  C_  ( X filGen F ) )
66 minvec.t . . . . . . . . . . . . . . . . . . 19  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
6732, 34readdcld 9107 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( A D P )  +  S
)  e.  RR )
6867rehalfcld 10206 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( A D P )  +  S )  /  2
)  e.  RR )
6968resqcld 11541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  e.  RR )
7034resqcld 11541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
7169, 70resubcld 9457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )  e.  RR )
7271adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR )
7334, 32, 34ltadd1d 9611 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( S  <  ( A D P )  <->  ( S  +  S )  <  (
( A D P )  +  S ) ) )
7434recnd 9106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  S  e.  CC )
75742timesd 10202 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  x.  S
)  =  ( S  +  S ) )
7675breq1d 4214 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
( S  +  S
)  <  ( ( A D P )  +  S ) ) )
77 2re 10061 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  RR
78 2pos 10074 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
7977, 78pm3.2i 442 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2  e.  RR  /\  0  <  2 )
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
81 ltmuldiv2 9873 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  S )  <  ( ( A D P )  +  S )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
8234, 67, 80, 81syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
S  <  ( (
( A D P )  +  S )  /  2 ) ) )
8373, 76, 823bitr2d 273 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  ( A D P )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
842, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 19317 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
8584simp3d 971 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
8684simp1d 969 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  C_  RR )
8784simp2d 970 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  =/=  (/) )
88 0re 9083 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  e.  RR
89 breq1 4207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
9089ralbidv 2717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
9190rspcev 3044 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9288, 85, 91sylancr 645 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9388a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
94 infmrgelb 9980 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
9586, 87, 92, 93, 94syl31anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
9685, 95mpbird 224 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
9796, 11syl6breqr 4244 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  S )
98 metge0 18367 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  0  <_  ( A D P ) )
9930, 8, 18, 98syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  0  <_  ( A D P ) )
10032, 34, 99, 97addge0d 9594 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  ( ( A D P )  +  S ) )
101 divge0 9871 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A D P )  +  S )  e.  RR  /\  0  <_  ( ( A D P )  +  S ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( ( ( A D P )  +  S
)  /  2 ) )
10267, 100, 80, 101syl21anc 1183 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  ( (
( A D P )  +  S )  /  2 ) )
10334, 68, 97, 102lt2sqd 11549 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  (
( ( A D P )  +  S
)  /  2 )  <-> 
( S ^ 2 )  <  ( ( ( ( A D P )  +  S
)  /  2 ) ^ 2 ) ) )
10470, 69posdifd 9605 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( S ^
2 )  <  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  <->  0  <  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) ) )
10583, 103, 1043bitrd 271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S  <  ( A D P )  <->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
106105biimpa 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
10772, 106elrpd 10638 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR+ )
10866, 107syl5eqel 2519 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  T  e.  RR+ )
1096adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  e.  ( LSubSp `  U )
)
110 rabexg 4345 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e.  ( LSubSp `  U
)  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
111109, 110syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
112 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
113 oveq2 6081 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  T  ->  (
( S ^ 2 )  +  r )  =  ( ( S ^ 2 )  +  T ) )
114113breq2d 4216 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  T  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r )  <->  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) ) )
115114rabbidv 2940 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  T  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) } )
116112, 115elrnmpt1s 5110 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  RR+  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
117108, 111, 116syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
118117, 13syl6eleqr 2526 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  F )
11965, 118sseldd 3341 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F ) )
120 ssrab2 3420 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  X
121120a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  X
)
12266oveq2i 6084 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S ^ 2 )  +  T )  =  ( ( S ^
2 )  +  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
12370ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  RR )
124123recnd 9106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  CC )
12568ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D P )  +  S
)  /  2 )  e.  RR )
126125resqcld 11541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  RR )
127126recnd 9106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  CC )
128124, 127pncan3d 9406 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
129122, 128syl5eq 2479 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  T )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
130129breq2d 4216 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
13130ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  D  e.  ( Met `  X
) )
1328ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  A  e.  X )
13344adantlr 696 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  y  e.  X )
134 metcl 18354 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  e.  RR )
135131, 132, 133, 134syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( A D y )  e.  RR )
136 metge0 18367 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  0  <_  ( A D y ) )
137131, 132, 133, 136syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( A D y ) )
138102ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( ( ( A D P )  +  S )  /  2
) )
139135, 125, 137, 138le2sqd 11550 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
140130, 139bitr4d 248 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
141140rabbidva 2939 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  =  { y  e.  Y  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )
14243adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  C_  X
)
143 rabss2 3418 . . . . . . . . . . . . . . . . 17  |-  ( Y 
C_  X  ->  { y  e.  Y  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
144142, 143syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) } )
145141, 144eqsstrd 3374 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
146 filss 17877 . . . . . . . . . . . . . . 15  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F )  /\  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } 
C_  X  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } ) )  ->  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  e.  ( X filGen F ) )
14763, 119, 121, 145, 146syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  ( X filGen F ) )
148 flimclsi 18002 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( X filGen F )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
149147, 148syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
150 inss1 3553 . . . . . . . . . . . . . . 15  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  ( J  fLim  ( X filGen F ) )
151150, 15sseldi 3338 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  ( J 
fLim  ( X filGen F ) ) )
152151adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( J  fLim  ( X
filGen F ) ) )
153149, 152sseldd 3341 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( ( cls `  J
) `  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) } ) )
154 ngpxms 18640 . . . . . . . . . . . . . . . . 17  |-  ( U  e. NrmGrp  ->  U  e.  * MetSp )
1552, 12xmsxmet 18478 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  * MetSp  ->  D  e.  ( * Met `  X
) )
15622, 154, 1553syl 19 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  ( * Met `  X ) )
157156adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  D  e.  ( * Met `  X
) )
1588adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  A  e.  X )
15968adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e.  RR )
160159rexrd 9126 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e. 
RR* )
161 eqid 2435 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
162 eqid 2435 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  =  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }
163161, 162blcld 18527 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  A  e.  X  /\  ( ( ( A D P )  +  S )  /  2
)  e.  RR* )  ->  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }  e.  ( Clsd `  ( MetOpen `  D )
) )
164157, 158, 160, 163syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  ( MetOpen `  D
) ) )
1659, 2, 12xmstopn 18473 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  * MetSp  ->  J  =  ( MetOpen `  D
) )
16622, 154, 1653syl 19 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  =  ( MetOpen `  D ) )
167166adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  J  =  ( MetOpen `  D )
)
168167fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( Clsd `  J )  =  (
Clsd `  ( MetOpen `  D
) ) )
169164, 168eleqtrrd 2512 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  J )
)
170 cldcls 17098 . . . . . . . . . . . . 13  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
171169, 170syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
172153, 171eleqtrd 2511 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
173 oveq2 6081 . . . . . . . . . . . . . 14  |-  ( y  =  P  ->  ( A D y )  =  ( A D P ) )
174173breq1d 4214 . . . . . . . . . . . . 13  |-  ( y  =  P  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
175174elrab 3084 . . . . . . . . . . . 12  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  <->  ( P  e.  X  /\  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
176175simprbi 451 . . . . . . . . . . 11  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  ->  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) )
177172, 176syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )
17832, 34, 32leadd2d 9613 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
17932recnd 9106 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A D P )  e.  CC )
1801792timesd 10202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( A D P ) )  =  ( ( A D P )  +  ( A D P ) ) )
181180breq1d 4214 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
182 lemuldiv2 9882 . . . . . . . . . . . . . 14  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( A D P ) )  <_  ( ( A D P )  +  S )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18379, 182mp3an3 1268 . . . . . . . . . . . . 13  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR )  ->  ( ( 2  x.  ( A D P ) )  <_ 
( ( A D P )  +  S
)  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18432, 67, 183syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( A D P )  <_  ( (
( A D P )  +  S )  /  2 ) ) )
185178, 181, 1843bitr2d 273 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( A D P )  <_  ( ( ( A D P )  +  S )  / 
2 ) ) )
186185biimpar 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )  ->  ( A D P )  <_  S
)
187177, 186syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  S
)
188187ex 424 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  -> 
( A D P )  <_  S )
)
18949, 188sylbird 227 . . . . . . 7  |-  ( ph  ->  ( -.  ( A D P )  <_  S  ->  ( A D P )  <_  S
) )
190189pm2.18d 105 . . . . . 6  |-  ( ph  ->  ( A D P )  <_  S )
191190adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_  S )
19286adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  R  C_  RR )
19392adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
194 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  Y )
195 fvex 5734 . . . . . . . . 9  |-  ( N `
 ( A  .-  y ) )  e. 
_V
196 eqid 2435 . . . . . . . . . 10  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
197196elrnmpt1 5111 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  ( N `  ( A 
.-  y ) )  e.  _V )  -> 
( N `  ( A  .-  y ) )  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) )
198194, 195, 197sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e. 
ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) )
199198, 10syl6eleqr 2526 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  R )
200 infmrlb 9981 . . . . . . 7  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A  .-  y ) )  e.  R )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  y ) ) )
201192, 193, 199, 200syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  y ) ) )
20211, 201syl5eqbr 4237 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  <_  ( N `  ( A  .-  y ) ) )
20333, 35, 48, 191, 202letrd 9219 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_ 
( N `  ( A  .-  y ) ) )
20427, 203eqbrtrrd 4226 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  P ) )  <_ 
( N `  ( A  .-  y ) ) )
205204ralrimiva 2781 . 2  |-  ( ph  ->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )
206 oveq2 6081 . . . . . 6  |-  ( x  =  P  ->  ( A  .-  x )  =  ( A  .-  P
) )
207206fveq2d 5724 . . . . 5  |-  ( x  =  P  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  P ) ) )
208207breq1d 4214 . . . 4  |-  ( x  =  P  ->  (
( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  ( N `  ( A  .-  P ) )  <_  ( N `  ( A  .-  y
) ) ) )
209208ralbidv 2717 . . 3  |-  ( x  =  P  ->  ( A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) ) )
210209rspcev 3044 . 2  |-  ( ( P  e.  Y  /\  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) ) )
21116, 205, 210syl2anc 643 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   class class class wbr 4204    e. cmpt 4258    X. cxp 4868   `'ccnv 4869   ran crn 4871    |` cres 4872   ` cfv 5446  (class class class)co 6073   supcsup 7437   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   2c2 10041   RR+crp 10604   ^cexp 11374   Basecbs 13461   ↾s cress 13462   distcds 13530   TopOpenctopn 13641   -gcsg 14680   LModclmod 15942   LSubSpclss 16000   * Metcxmt 16678   Metcme 16679   fBascfbas 16681   filGencfg 16682   MetOpencmopn 16683   Clsdccld 17072   clsccl 17074   Filcfil 17869    fLim cflim 17958   *
MetSpcxme 18339   MetSpcmt 18340   normcnm 18616  NrmGrpcngp 18617   CPreHilccph 19121  CMetSpccms 19277
This theorem is referenced by:  minveclem5  19326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ico 10914  df-icc 10915  df-fz 11036  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-rest 13642  df-topgen 13659  df-0g 13719  df-mnd 14682  df-mhm 14730  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-dvr 15780  df-rnghom 15811  df-drng 15829  df-subrg 15858  df-staf 15925  df-srng 15926  df-lmod 15944  df-lss 16001  df-lmhm 16090  df-lvec 16167  df-sra 16236  df-rgmod 16237  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-phl 16849  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-haus 17371  df-fil 17870  df-flim 17963  df-xms 18342  df-ms 18343  df-nm 18622  df-ngp 18623  df-nlm 18626  df-clm 19080  df-cph 19123  df-cfil 19200  df-cmet 19202  df-cms 19280
  Copyright terms: Public domain W3C validator