MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Unicode version

Theorem minveclem4 19193
Description: Lemma for minvec 19197. The convergent point of the Cauchy sequence  F attains the minimum distance, and so is closer to  A than any other point in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
minvec.t  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
Assertion
Ref Expression
minveclem4  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Distinct variable groups:    x, y,  .-    x, r, y, A    J, r, x, y    x, P, y    x, F, y   
x, N, y    ph, r, x, y    x, R, y   
x, U, y    X, r, x, y    Y, r, x, y    D, r, x, y    S, r, x, y    T, r, y
Allowed substitution hints:    P( r)    R( r)    T( x)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 inss2 3498 . . 3  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  Y
2 minvec.x . . . 4  |-  X  =  ( Base `  U
)
3 minvec.m . . . 4  |-  .-  =  ( -g `  U )
4 minvec.n . . . 4  |-  N  =  ( norm `  U
)
5 minvec.u . . . 4  |-  ( ph  ->  U  e.  CPreHil )
6 minvec.y . . . 4  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
7 minvec.w . . . 4  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
8 minvec.a . . . 4  |-  ( ph  ->  A  e.  X )
9 minvec.j . . . 4  |-  J  =  ( TopOpen `  U )
10 minvec.r . . . 4  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
11 minvec.s . . . 4  |-  S  =  sup ( R ,  RR ,  `'  <  )
12 minvec.d . . . 4  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
13 minvec.f . . . 4  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
14 minvec.p . . . 4  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4a 19191 . . 3  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
161, 15sseldi 3282 . 2  |-  ( ph  ->  P  e.  Y )
1712oveqi 6026 . . . . . . 7  |-  ( A D P )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )
182, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4b 19192 . . . . . . . 8  |-  ( ph  ->  P  e.  X )
198, 18ovresd 6146 . . . . . . 7  |-  ( ph  ->  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )  =  ( A (
dist `  U ) P ) )
2017, 19syl5eq 2424 . . . . . 6  |-  ( ph  ->  ( A D P )  =  ( A ( dist `  U
) P ) )
21 cphngp 19000 . . . . . . . 8  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
225, 21syl 16 . . . . . . 7  |-  ( ph  ->  U  e. NrmGrp )
23 eqid 2380 . . . . . . . 8  |-  ( dist `  U )  =  (
dist `  U )
244, 2, 3, 23ngpds 18514 . . . . . . 7  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  P  e.  X )  ->  ( A ( dist `  U
) P )  =  ( N `  ( A  .-  P ) ) )
2522, 8, 18, 24syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( A ( dist `  U ) P )  =  ( N `  ( A  .-  P ) ) )
2620, 25eqtrd 2412 . . . . 5  |-  ( ph  ->  ( A D P )  =  ( N `
 ( A  .-  P ) ) )
2726adantr 452 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  =  ( N `  ( A  .-  P ) ) )
28 ngpms 18511 . . . . . . . 8  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
292, 12msmet 18370 . . . . . . . 8  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
3022, 28, 293syl 19 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
31 metcl 18264 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  ( A D P )  e.  RR )
3230, 8, 18, 31syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( A D P )  e.  RR )
3332adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  e.  RR )
342, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 19186 . . . . . 6  |-  ( ph  ->  S  e.  RR )
3534adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  e.  RR )
3622adantr 452 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e. NrmGrp )
37 cphlmod 19001 . . . . . . . . 9  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
385, 37syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
3938adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  LMod )
408adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
41 eqid 2380 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
422, 41lssss 15933 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
436, 42syl 16 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
4443sselda 3284 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
452, 3lmodvsubcl 15909 . . . . . . 7  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .-  y )  e.  X )
4639, 40, 44, 45syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A  .-  y )  e.  X )
472, 4nmcl 18526 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4836, 46, 47syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4934, 32ltnled 9145 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  <->  -.  ( A D P )  <_  S ) )
502, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem3b 19189 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
51 fbsspw 17778 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
5250, 51syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  C_  ~P Y
)
53 sspwb 4347 . . . . . . . . . . . . . . . . . . . 20  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
5443, 53sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ~P Y  C_  ~P X )
5552, 54sstrd 3294 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  C_  ~P X
)
56 fvex 5675 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  U )  e.  _V
572, 56eqeltri 2450 . . . . . . . . . . . . . . . . . . 19  |-  X  e. 
_V
5857a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  X  e.  _V )
59 fbasweak 17811 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
6050, 55, 58, 59syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( fBas `  X ) )
6160adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  e.  ( fBas `  X )
)
62 fgcl 17824 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
6361, 62syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( X filGen F )  e.  ( Fil `  X ) )
64 ssfg 17818 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
6561, 64syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  C_  ( X filGen F ) )
66 minvec.t . . . . . . . . . . . . . . . . . . 19  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
6732, 34readdcld 9041 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( A D P )  +  S
)  e.  RR )
6867rehalfcld 10139 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( A D P )  +  S )  /  2
)  e.  RR )
6968resqcld 11469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  e.  RR )
7034resqcld 11469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
7169, 70resubcld 9390 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )  e.  RR )
7271adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR )
7334, 32, 34ltadd1d 9544 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( S  <  ( A D P )  <->  ( S  +  S )  <  (
( A D P )  +  S ) ) )
7434recnd 9040 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  S  e.  CC )
75742timesd 10135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  x.  S
)  =  ( S  +  S ) )
7675breq1d 4156 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
( S  +  S
)  <  ( ( A D P )  +  S ) ) )
77 2re 9994 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  RR
78 2pos 10007 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
7977, 78pm3.2i 442 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2  e.  RR  /\  0  <  2 )
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
81 ltmuldiv2 9806 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  S )  <  ( ( A D P )  +  S )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
8234, 67, 80, 81syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
S  <  ( (
( A D P )  +  S )  /  2 ) ) )
8373, 76, 823bitr2d 273 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  ( A D P )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
842, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 19185 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
8584simp3d 971 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
8684simp1d 969 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  C_  RR )
8784simp2d 970 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  =/=  (/) )
88 0re 9017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  e.  RR
89 breq1 4149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
9089ralbidv 2662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
9190rspcev 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9288, 85, 91sylancr 645 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9388a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
94 infmrgelb 9913 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
9586, 87, 92, 93, 94syl31anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
9685, 95mpbird 224 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
9796, 11syl6breqr 4186 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  S )
98 metge0 18277 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  0  <_  ( A D P ) )
9930, 8, 18, 98syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  0  <_  ( A D P ) )
10032, 34, 99, 97addge0d 9527 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  ( ( A D P )  +  S ) )
101 divge0 9804 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A D P )  +  S )  e.  RR  /\  0  <_  ( ( A D P )  +  S ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( ( ( A D P )  +  S
)  /  2 ) )
10267, 100, 80, 101syl21anc 1183 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  ( (
( A D P )  +  S )  /  2 ) )
10334, 68, 97, 102lt2sqd 11477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  (
( ( A D P )  +  S
)  /  2 )  <-> 
( S ^ 2 )  <  ( ( ( ( A D P )  +  S
)  /  2 ) ^ 2 ) ) )
10470, 69posdifd 9538 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( S ^
2 )  <  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  <->  0  <  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) ) )
10583, 103, 1043bitrd 271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S  <  ( A D P )  <->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
106105biimpa 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
10772, 106elrpd 10571 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR+ )
10866, 107syl5eqel 2464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  T  e.  RR+ )
1096adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  e.  ( LSubSp `  U )
)
110 rabexg 4287 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e.  ( LSubSp `  U
)  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
111109, 110syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
112 eqid 2380 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
113 oveq2 6021 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  T  ->  (
( S ^ 2 )  +  r )  =  ( ( S ^ 2 )  +  T ) )
114113breq2d 4158 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  T  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r )  <->  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) ) )
115114rabbidv 2884 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  T  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) } )
116112, 115elrnmpt1s 5051 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  RR+  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
117108, 111, 116syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
118117, 13syl6eleqr 2471 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  F )
11965, 118sseldd 3285 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F ) )
120 ssrab2 3364 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  X
121120a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  X
)
12266oveq2i 6024 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S ^ 2 )  +  T )  =  ( ( S ^
2 )  +  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
12370ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  RR )
124123recnd 9040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  CC )
12568ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D P )  +  S
)  /  2 )  e.  RR )
126125resqcld 11469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  RR )
127126recnd 9040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  CC )
128124, 127pncan3d 9339 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
129122, 128syl5eq 2424 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  T )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
130129breq2d 4158 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
13130ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  D  e.  ( Met `  X
) )
1328ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  A  e.  X )
13344adantlr 696 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  y  e.  X )
134 metcl 18264 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  e.  RR )
135131, 132, 133, 134syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( A D y )  e.  RR )
136 metge0 18277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  0  <_  ( A D y ) )
137131, 132, 133, 136syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( A D y ) )
138102ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( ( ( A D P )  +  S )  /  2
) )
139135, 125, 137, 138le2sqd 11478 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
140130, 139bitr4d 248 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
141140rabbidva 2883 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  =  { y  e.  Y  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )
14243adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  C_  X
)
143 rabss2 3362 . . . . . . . . . . . . . . . . 17  |-  ( Y 
C_  X  ->  { y  e.  Y  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
144142, 143syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) } )
145141, 144eqsstrd 3318 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
146 filss 17799 . . . . . . . . . . . . . . 15  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F )  /\  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } 
C_  X  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } ) )  ->  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  e.  ( X filGen F ) )
14763, 119, 121, 145, 146syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  ( X filGen F ) )
148 flimclsi 17924 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( X filGen F )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
149147, 148syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
150 inss1 3497 . . . . . . . . . . . . . . 15  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  ( J  fLim  ( X filGen F ) )
151150, 15sseldi 3282 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  ( J 
fLim  ( X filGen F ) ) )
152151adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( J  fLim  ( X
filGen F ) ) )
153149, 152sseldd 3285 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( ( cls `  J
) `  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) } ) )
154 ngpxms 18512 . . . . . . . . . . . . . . . . 17  |-  ( U  e. NrmGrp  ->  U  e.  * MetSp )
1552, 12xmsxmet 18369 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  * MetSp  ->  D  e.  ( * Met `  X
) )
15622, 154, 1553syl 19 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  ( * Met `  X ) )
157156adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  D  e.  ( * Met `  X
) )
1588adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  A  e.  X )
15968adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e.  RR )
160159rexrd 9060 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e. 
RR* )
161 eqid 2380 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
162 eqid 2380 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  =  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }
163161, 162blcld 18418 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  A  e.  X  /\  ( ( ( A D P )  +  S )  /  2
)  e.  RR* )  ->  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }  e.  ( Clsd `  ( MetOpen `  D )
) )
164157, 158, 160, 163syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  ( MetOpen `  D
) ) )
1659, 2, 12xmstopn 18364 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  * MetSp  ->  J  =  ( MetOpen `  D
) )
16622, 154, 1653syl 19 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  =  ( MetOpen `  D ) )
167166adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  J  =  ( MetOpen `  D )
)
168167fveq2d 5665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( Clsd `  J )  =  (
Clsd `  ( MetOpen `  D
) ) )
169164, 168eleqtrrd 2457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  J )
)
170 cldcls 17022 . . . . . . . . . . . . 13  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
171169, 170syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
172153, 171eleqtrd 2456 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
173 oveq2 6021 . . . . . . . . . . . . . 14  |-  ( y  =  P  ->  ( A D y )  =  ( A D P ) )
174173breq1d 4156 . . . . . . . . . . . . 13  |-  ( y  =  P  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
175174elrab 3028 . . . . . . . . . . . 12  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  <->  ( P  e.  X  /\  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
176175simprbi 451 . . . . . . . . . . 11  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  ->  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) )
177172, 176syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )
17832, 34, 32leadd2d 9546 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
17932recnd 9040 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A D P )  e.  CC )
1801792timesd 10135 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( A D P ) )  =  ( ( A D P )  +  ( A D P ) ) )
181180breq1d 4156 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
182 lemuldiv2 9815 . . . . . . . . . . . . . 14  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( A D P ) )  <_  ( ( A D P )  +  S )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18379, 182mp3an3 1268 . . . . . . . . . . . . 13  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR )  ->  ( ( 2  x.  ( A D P ) )  <_ 
( ( A D P )  +  S
)  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18432, 67, 183syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( A D P )  <_  ( (
( A D P )  +  S )  /  2 ) ) )
185178, 181, 1843bitr2d 273 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( A D P )  <_  ( ( ( A D P )  +  S )  / 
2 ) ) )
186185biimpar 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )  ->  ( A D P )  <_  S
)
187177, 186syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  S
)
188187ex 424 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  -> 
( A D P )  <_  S )
)
18949, 188sylbird 227 . . . . . . 7  |-  ( ph  ->  ( -.  ( A D P )  <_  S  ->  ( A D P )  <_  S
) )
190189pm2.18d 105 . . . . . 6  |-  ( ph  ->  ( A D P )  <_  S )
191190adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_  S )
19286adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  R  C_  RR )
19392adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
194 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  Y )
195 fvex 5675 . . . . . . . . 9  |-  ( N `
 ( A  .-  y ) )  e. 
_V
196 eqid 2380 . . . . . . . . . 10  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
197196elrnmpt1 5052 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  ( N `  ( A 
.-  y ) )  e.  _V )  -> 
( N `  ( A  .-  y ) )  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) )
198194, 195, 197sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e. 
ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) )
199198, 10syl6eleqr 2471 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  R )
200 infmrlb 9914 . . . . . . 7  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A  .-  y ) )  e.  R )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  y ) ) )
201192, 193, 199, 200syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  y ) ) )
20211, 201syl5eqbr 4179 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  <_  ( N `  ( A  .-  y ) ) )
20333, 35, 48, 191, 202letrd 9152 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_ 
( N `  ( A  .-  y ) ) )
20427, 203eqbrtrrd 4168 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  P ) )  <_ 
( N `  ( A  .-  y ) ) )
205204ralrimiva 2725 . 2  |-  ( ph  ->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )
206 oveq2 6021 . . . . . 6  |-  ( x  =  P  ->  ( A  .-  x )  =  ( A  .-  P
) )
207206fveq2d 5665 . . . . 5  |-  ( x  =  P  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  P ) ) )
208207breq1d 4156 . . . 4  |-  ( x  =  P  ->  (
( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  ( N `  ( A  .-  P ) )  <_  ( N `  ( A  .-  y
) ) ) )
209208ralbidv 2662 . . 3  |-  ( x  =  P  ->  ( A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) ) )
210209rspcev 2988 . 2  |-  ( ( P  e.  Y  /\  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) ) )
21116, 205, 210syl2anc 643 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643   {crab 2646   _Vcvv 2892    i^i cin 3255    C_ wss 3256   (/)c0 3564   ~Pcpw 3735   U.cuni 3950   class class class wbr 4146    e. cmpt 4200    X. cxp 4809   `'ccnv 4810   ran crn 4812    |` cres 4813   ` cfv 5387  (class class class)co 6013   supcsup 7373   RRcr 8915   0cc0 8916    + caddc 8919    x. cmul 8921   RR*cxr 9045    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   2c2 9974   RR+crp 10537   ^cexp 11302   Basecbs 13389   ↾s cress 13390   distcds 13458   TopOpenctopn 13569   -gcsg 14608   LModclmod 15870   LSubSpclss 15928   * Metcxmt 16605   Metcme 16606   fBascfbas 16608   filGencfg 16609   MetOpencmopn 16610   Clsdccld 16996   clsccl 16998   Filcfil 17791    fLim cflim 17880   *
MetSpcxme 18249   MetSpcmt 18250   normcnm 18488  NrmGrpcngp 18489   CPreHilccph 18993  CMetSpccms 19147
This theorem is referenced by:  minveclem5  19194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ico 10847  df-icc 10848  df-fz 10969  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-rest 13570  df-topgen 13587  df-0g 13647  df-mnd 14610  df-mhm 14658  df-grp 14732  df-minusg 14733  df-sbg 14734  df-mulg 14735  df-subg 14861  df-ghm 14924  df-cmn 15334  df-abl 15335  df-mgp 15569  df-rng 15583  df-cring 15584  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-dvr 15708  df-rnghom 15739  df-drng 15757  df-subrg 15786  df-staf 15853  df-srng 15854  df-lmod 15872  df-lss 15929  df-lmhm 16018  df-lvec 16095  df-sra 16164  df-rgmod 16165  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-cnfld 16620  df-phl 16773  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-ntr 17000  df-cls 17001  df-nei 17078  df-haus 17294  df-fil 17792  df-flim 17885  df-xms 18252  df-ms 18253  df-nm 18494  df-ngp 18495  df-nlm 18498  df-clm 18952  df-cph 18995  df-cfil 19072  df-cmet 19074  df-cms 19150
  Copyright terms: Public domain W3C validator