MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4a Unicode version

Theorem minveclem4a 19191
Description: Lemma for minvec 19197. 
F converges to a point 
P in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
Assertion
Ref Expression
minveclem4a  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
Distinct variable groups:    y,  .-    y, r, A    J, r,
y    y, P    y, F    y, N    ph, r, y    y, R    y, U    X, r,
y    Y, r, y    D, r, y    S, r, y
Allowed substitution hints:    P( r)    R( r)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4a
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 minvec.p . 2  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
2 ovex 6038 . . . . 5  |-  ( J 
fLim  ( X filGen F ) )  e.  _V
32uniex 4638 . . . 4  |-  U. ( J  fLim  ( X filGen F ) )  e.  _V
43snid 3777 . . 3  |-  U. ( J  fLim  ( X filGen F ) )  e.  { U. ( J  fLim  ( X filGen F ) ) }
5 minvec.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CPreHil )
6 cphngp 19000 . . . . . . . . . . . 12  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
7 ngpxms 18512 . . . . . . . . . . . 12  |-  ( U  e. NrmGrp  ->  U  e.  * MetSp )
85, 6, 73syl 19 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  * MetSp )
9 minvec.j . . . . . . . . . . . 12  |-  J  =  ( TopOpen `  U )
10 minvec.x . . . . . . . . . . . 12  |-  X  =  ( Base `  U
)
11 minvec.d . . . . . . . . . . . 12  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
129, 10, 11xmstopn 18364 . . . . . . . . . . 11  |-  ( U  e.  * MetSp  ->  J  =  ( MetOpen `  D
) )
138, 12syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  =  ( MetOpen `  D ) )
1413oveq1d 6028 . . . . . . . . 9  |-  ( ph  ->  ( Jt  Y )  =  ( ( MetOpen `  D )t  Y
) )
1510, 11xmsxmet 18369 . . . . . . . . . . 11  |-  ( U  e.  * MetSp  ->  D  e.  ( * Met `  X
) )
168, 15syl 16 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( * Met `  X ) )
17 minvec.y . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
18 eqid 2380 . . . . . . . . . . . 12  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
1910, 18lssss 15933 . . . . . . . . . . 11  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
2017, 19syl 16 . . . . . . . . . 10  |-  ( ph  ->  Y  C_  X )
21 eqid 2380 . . . . . . . . . . 11  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
22 eqid 2380 . . . . . . . . . . 11  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
23 eqid 2380 . . . . . . . . . . 11  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
2421, 22, 23metrest 18437 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( ( MetOpen
`  D )t  Y )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
2516, 20, 24syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( MetOpen `  D
)t 
Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
2614, 25eqtr2d 2413 . . . . . . . 8  |-  ( ph  ->  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
27 minvec.m . . . . . . . . . . . 12  |-  .-  =  ( -g `  U )
28 minvec.n . . . . . . . . . . . 12  |-  N  =  ( norm `  U
)
29 minvec.w . . . . . . . . . . . 12  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
30 minvec.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  X )
31 minvec.r . . . . . . . . . . . 12  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
32 minvec.s . . . . . . . . . . . 12  |-  S  =  sup ( R ,  RR ,  `'  <  )
33 minvec.f . . . . . . . . . . . 12  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
3410, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3b 19189 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
35 fgcl 17824 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  Y
)  ->  ( Y filGen F )  e.  ( Fil `  Y ) )
3634, 35syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Y filGen F )  e.  ( Fil `  Y
) )
37 fvex 5675 . . . . . . . . . . . 12  |-  ( Base `  U )  e.  _V
3810, 37eqeltri 2450 . . . . . . . . . . 11  |-  X  e. 
_V
3938a1i 11 . . . . . . . . . 10  |-  ( ph  ->  X  e.  _V )
40 trfg 17837 . . . . . . . . . 10  |-  ( ( ( Y filGen F )  e.  ( Fil `  Y
)  /\  Y  C_  X  /\  X  e.  _V )  ->  ( ( X
filGen ( Y filGen F ) )t  Y )  =  ( Y filGen F ) )
4136, 20, 39, 40syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( ( X filGen ( Y filGen F ) )t  Y )  =  ( Y
filGen F ) )
42 fgabs 17825 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
4334, 20, 42syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( X filGen ( Y
filGen F ) )  =  ( X filGen F ) )
4443oveq1d 6028 . . . . . . . . 9  |-  ( ph  ->  ( ( X filGen ( Y filGen F ) )t  Y )  =  ( ( X filGen F )t  Y ) )
4541, 44eqtr3d 2414 . . . . . . . 8  |-  ( ph  ->  ( Y filGen F )  =  ( ( X
filGen F )t  Y ) )
4626, 45oveq12d 6031 . . . . . . 7  |-  ( ph  ->  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( Y filGen F ) )  =  ( ( Jt  Y )  fLim  (
( X filGen F )t  Y ) ) )
47 xmstps 18366 . . . . . . . . . 10  |-  ( U  e.  * MetSp  ->  U  e.  TopSp )
488, 47syl 16 . . . . . . . . 9  |-  ( ph  ->  U  e.  TopSp )
4910, 9istps 16917 . . . . . . . . 9  |-  ( U  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
5048, 49sylib 189 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
51 fbsspw 17778 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
5234, 51syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  C_  ~P Y
)
53 sspwb 4347 . . . . . . . . . . . 12  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
5420, 53sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  ~P Y  C_  ~P X )
5552, 54sstrd 3294 . . . . . . . . . 10  |-  ( ph  ->  F  C_  ~P X
)
56 fbasweak 17811 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
5734, 55, 39, 56syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( fBas `  X ) )
58 fgcl 17824 . . . . . . . . 9  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
5957, 58syl 16 . . . . . . . 8  |-  ( ph  ->  ( X filGen F )  e.  ( Fil `  X
) )
60 filfbas 17794 . . . . . . . . . . . . 13  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  ( Y filGen F )  e.  (
fBas `  Y )
)
6134, 35, 603syl 19 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y filGen F )  e.  ( fBas `  Y
) )
62 fbsspw 17778 . . . . . . . . . . . . . 14  |-  ( ( Y filGen F )  e.  ( fBas `  Y
)  ->  ( Y filGen F )  C_  ~P Y )
6361, 62syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Y filGen F ) 
C_  ~P Y )
6463, 54sstrd 3294 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y filGen F ) 
C_  ~P X )
65 fbasweak 17811 . . . . . . . . . . . 12  |-  ( ( ( Y filGen F )  e.  ( fBas `  Y
)  /\  ( Y filGen F )  C_  ~P X  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
6661, 64, 39, 65syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( Y filGen F )  e.  ( fBas `  X
) )
67 ssfg 17818 . . . . . . . . . . 11  |-  ( ( Y filGen F )  e.  ( fBas `  X
)  ->  ( Y filGen F )  C_  ( X filGen ( Y filGen F ) ) )
6866, 67syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Y filGen F ) 
C_  ( X filGen ( Y filGen F ) ) )
6968, 43sseqtrd 3320 . . . . . . . . 9  |-  ( ph  ->  ( Y filGen F ) 
C_  ( X filGen F ) )
70 filtop 17801 . . . . . . . . . 10  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  Y  e.  ( Y filGen F ) )
7136, 70syl 16 . . . . . . . . 9  |-  ( ph  ->  Y  e.  ( Y
filGen F ) )
7269, 71sseldd 3285 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( X
filGen F ) )
73 flimrest 17929 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen F )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen F ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen F )t  Y ) )  =  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
7450, 59, 72, 73syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( Jt  Y ) 
fLim  ( ( X
filGen F )t  Y ) )  =  ( ( J  fLim  ( X filGen F ) )  i^i  Y ) )
7546, 74eqtrd 2412 . . . . . 6  |-  ( ph  ->  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( Y filGen F ) )  =  ( ( J  fLim  ( X filGen F ) )  i^i  Y ) )
7610, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11minveclem3a 19188 . . . . . . 7  |-  ( ph  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
7710, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33minveclem3 19190 . . . . . . 7  |-  ( ph  ->  ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
7823cmetcvg 19102 . . . . . . 7  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( Y filGen F )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( Y filGen F ) )  =/=  (/) )
7976, 77, 78syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( Y filGen F ) )  =/=  (/) )
8075, 79eqnetrrd 2563 . . . . 5  |-  ( ph  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =/=  (/) )
8180neneqd 2559 . . . 4  |-  ( ph  ->  -.  ( ( J 
fLim  ( X filGen F ) )  i^i  Y
)  =  (/) )
82 inss1 3497 . . . . . . 7  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  ( J  fLim  ( X filGen F ) )
8322methaus 18433 . . . . . . . . . . . . 13  |-  ( D  e.  ( * Met `  X )  ->  ( MetOpen
`  D )  e. 
Haus )
8415, 83syl 16 . . . . . . . . . . . 12  |-  ( U  e.  * MetSp  ->  ( MetOpen
`  D )  e. 
Haus )
8512, 84eqeltrd 2454 . . . . . . . . . . 11  |-  ( U  e.  * MetSp  ->  J  e.  Haus )
86 hausflimi 17926 . . . . . . . . . . 11  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  ( X filGen F ) ) )
878, 85, 863syl 19 . . . . . . . . . 10  |-  ( ph  ->  E* x  x  e.  ( J  fLim  ( X filGen F ) ) )
88 ssn0 3596 . . . . . . . . . . . 12  |-  ( ( ( ( J  fLim  ( X filGen F ) )  i^i  Y )  C_  ( J  fLim  ( X
filGen F ) )  /\  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =/=  (/) )  ->  ( J 
fLim  ( X filGen F ) )  =/=  (/) )
8982, 80, 88sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( J  fLim  ( X filGen F ) )  =/=  (/) )
90 n0moeu 3576 . . . . . . . . . . 11  |-  ( ( J  fLim  ( X filGen F ) )  =/=  (/)  ->  ( E* x  x  e.  ( J  fLim  ( X filGen F ) )  <->  E! x  x  e.  ( J  fLim  ( X filGen F ) ) ) )
9189, 90syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( E* x  x  e.  ( J  fLim  ( X filGen F ) )  <-> 
E! x  x  e.  ( J  fLim  ( X filGen F ) ) ) )
9287, 91mpbid 202 . . . . . . . . 9  |-  ( ph  ->  E! x  x  e.  ( J  fLim  ( X filGen F ) ) )
93 euen1b 7107 . . . . . . . . 9  |-  ( ( J  fLim  ( X filGen F ) )  ~~  1o 
<->  E! x  x  e.  ( J  fLim  ( X filGen F ) ) )
9492, 93sylibr 204 . . . . . . . 8  |-  ( ph  ->  ( J  fLim  ( X filGen F ) ) 
~~  1o )
95 en1b 7104 . . . . . . . 8  |-  ( ( J  fLim  ( X filGen F ) )  ~~  1o 
<->  ( J  fLim  ( X filGen F ) )  =  { U. ( J  fLim  ( X filGen F ) ) } )
9694, 95sylib 189 . . . . . . 7  |-  ( ph  ->  ( J  fLim  ( X filGen F ) )  =  { U. ( J  fLim  ( X filGen F ) ) } )
9782, 96syl5sseq 3332 . . . . . 6  |-  ( ph  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  C_  { U. ( J  fLim  ( X filGen F ) ) } )
98 sssn 3893 . . . . . 6  |-  ( ( ( J  fLim  ( X filGen F ) )  i^i  Y )  C_  { U. ( J  fLim  ( X filGen F ) ) }  <->  ( ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  =  (/)  \/  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } ) )
9997, 98sylib 189 . . . . 5  |-  ( ph  ->  ( ( ( J 
fLim  ( X filGen F ) )  i^i  Y
)  =  (/)  \/  (
( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } ) )
10099ord 367 . . . 4  |-  ( ph  ->  ( -.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  =  (/)  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } ) )
10181, 100mpd 15 . . 3  |-  ( ph  ->  ( ( J  fLim  ( X filGen F ) )  i^i  Y )  =  { U. ( J 
fLim  ( X filGen F ) ) } )
1024, 101syl5eleqr 2467 . 2  |-  ( ph  ->  U. ( J  fLim  ( X filGen F ) )  e.  ( ( J 
fLim  ( X filGen F ) )  i^i  Y
) )
1031, 102syl5eqel 2464 1  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    = wceq 1649    e. wcel 1717   E!weu 2231   E*wmo 2232    =/= wne 2543   {crab 2646   _Vcvv 2892    i^i cin 3255    C_ wss 3256   (/)c0 3564   ~Pcpw 3735   {csn 3750   U.cuni 3950   class class class wbr 4146    e. cmpt 4200    X. cxp 4809   `'ccnv 4810   ran crn 4812    |` cres 4813   ` cfv 5387  (class class class)co 6013   1oc1o 6646    ~~ cen 7035   supcsup 7373   RRcr 8915    + caddc 8919    < clt 9046    <_ cle 9047   2c2 9974   RR+crp 10537   ^cexp 11302   Basecbs 13389   ↾s cress 13390   distcds 13458   ↾t crest 13568   TopOpenctopn 13569   -gcsg 14608   LSubSpclss 15928   * Metcxmt 16605   fBascfbas 16608   filGencfg 16609   MetOpencmopn 16610  TopOnctopon 16875   TopSpctps 16877   Hauscha 17287   Filcfil 17791    fLim cflim 17880   *
MetSpcxme 18249   normcnm 18488  NrmGrpcngp 18489   CPreHilccph 18993  CauFilccfil 19069   CMetcms 19071  CMetSpccms 19147
This theorem is referenced by:  minveclem4b  19192  minveclem4  19193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ico 10847  df-icc 10848  df-fz 10969  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-rest 13570  df-topgen 13587  df-0g 13647  df-mnd 14610  df-mhm 14658  df-grp 14732  df-minusg 14733  df-sbg 14734  df-mulg 14735  df-subg 14861  df-ghm 14924  df-cmn 15334  df-abl 15335  df-mgp 15569  df-rng 15583  df-cring 15584  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-dvr 15708  df-rnghom 15739  df-drng 15757  df-subrg 15786  df-staf 15853  df-srng 15854  df-lmod 15872  df-lss 15929  df-lmhm 16018  df-lvec 16095  df-sra 16164  df-rgmod 16165  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-cnfld 16620  df-phl 16773  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-ntr 17000  df-nei 17078  df-haus 17294  df-fil 17792  df-flim 17885  df-xms 18252  df-ms 18253  df-nm 18494  df-ngp 18495  df-nlm 18498  df-clm 18952  df-cph 18995  df-cfil 19072  df-cmet 19074  df-cms 19150
  Copyright terms: Public domain W3C validator